Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch2 Structured version   Visualization version   GIF version

Theorem cvlexch2 36624
 Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexch2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))

Proof of Theorem cvlexch2
StepHypRef Expression
1 cvlexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvlexch.l . . 3 = (le‘𝐾)
3 cvlexch.j . . 3 = (join‘𝐾)
4 cvlexch.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4cvlexch1 36623 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
6 cvllat 36621 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
763ad2ant1 1130 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝐾 ∈ Lat)
8 simp22 1204 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑄𝐴)
91, 4atbase 36584 . . . . 5 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑄𝐵)
11 simp23 1205 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋𝐵)
121, 3latjcom 17665 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) = (𝑋 𝑄))
137, 10, 11, 12syl3anc 1368 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑄 𝑋) = (𝑋 𝑄))
1413breq2d 5045 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ 𝑃 (𝑋 𝑄)))
15 simp21 1203 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑃𝐴)
161, 4atbase 36584 . . . . 5 (𝑃𝐴𝑃𝐵)
1715, 16syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑃𝐵)
181, 3latjcom 17665 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) = (𝑋 𝑃))
197, 17, 11, 18syl3anc 1368 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 𝑋) = (𝑋 𝑃))
2019breq2d 5045 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑄 (𝑃 𝑋) ↔ 𝑄 (𝑋 𝑃)))
215, 14, 203imtr4d 297 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  joincjn 17550  Latclat 17651  Atomscatm 36558  CvLatclc 36560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-lub 17580  df-join 17582  df-lat 17652  df-ats 36562  df-atl 36593  df-cvlat 36617 This theorem is referenced by:  hlexch2  36678
 Copyright terms: Public domain W3C validator