Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch2 Structured version   Visualization version   GIF version

Theorem cvlexch2 39374
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexch2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))

Proof of Theorem cvlexch2
StepHypRef Expression
1 cvlexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvlexch.l . . 3 = (le‘𝐾)
3 cvlexch.j . . 3 = (join‘𝐾)
4 cvlexch.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4cvlexch1 39373 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
6 cvllat 39371 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
763ad2ant1 1133 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝐾 ∈ Lat)
8 simp22 1208 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑄𝐴)
91, 4atbase 39334 . . . . 5 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑄𝐵)
11 simp23 1209 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋𝐵)
121, 3latjcom 18353 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) = (𝑋 𝑄))
137, 10, 11, 12syl3anc 1373 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑄 𝑋) = (𝑋 𝑄))
1413breq2d 5103 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ 𝑃 (𝑋 𝑄)))
15 simp21 1207 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑃𝐴)
161, 4atbase 39334 . . . . 5 (𝑃𝐴𝑃𝐵)
1715, 16syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑃𝐵)
181, 3latjcom 18353 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) = (𝑋 𝑃))
197, 17, 11, 18syl3anc 1373 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 𝑋) = (𝑋 𝑃))
2019breq2d 5103 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑄 (𝑃 𝑋) ↔ 𝑄 (𝑋 𝑃)))
215, 14, 203imtr4d 294 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39308  CvLatclc 39310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-lub 18250  df-join 18252  df-lat 18338  df-ats 39312  df-atl 39343  df-cvlat 39367
This theorem is referenced by:  hlexch2  39428
  Copyright terms: Public domain W3C validator