Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch2 Structured version   Visualization version   GIF version

Theorem cvlexch2 38194
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
cvlexch.b 𝐡 = (Baseβ€˜πΎ)
cvlexch.l ≀ = (leβ€˜πΎ)
cvlexch.j ∨ = (joinβ€˜πΎ)
cvlexch.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvlexch2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑃 ≀ (𝑄 ∨ 𝑋) β†’ 𝑄 ≀ (𝑃 ∨ 𝑋)))

Proof of Theorem cvlexch2
StepHypRef Expression
1 cvlexch.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cvlexch.l . . 3 ≀ = (leβ€˜πΎ)
3 cvlexch.j . . 3 ∨ = (joinβ€˜πΎ)
4 cvlexch.a . . 3 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4cvlexch1 38193 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑃 ≀ (𝑋 ∨ 𝑄) β†’ 𝑄 ≀ (𝑋 ∨ 𝑃)))
6 cvllat 38191 . . . . 5 (𝐾 ∈ CvLat β†’ 𝐾 ∈ Lat)
763ad2ant1 1133 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ 𝐾 ∈ Lat)
8 simp22 1207 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ 𝑄 ∈ 𝐴)
91, 4atbase 38154 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
108, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ 𝑄 ∈ 𝐡)
11 simp23 1208 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ 𝑋 ∈ 𝐡)
121, 3latjcom 18399 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄))
137, 10, 11, 12syl3anc 1371 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄))
1413breq2d 5160 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑃 ≀ (𝑄 ∨ 𝑋) ↔ 𝑃 ≀ (𝑋 ∨ 𝑄)))
15 simp21 1206 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ 𝑃 ∈ 𝐴)
161, 4atbase 38154 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
1715, 16syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ 𝑃 ∈ 𝐡)
181, 3latjcom 18399 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃))
197, 17, 11, 18syl3anc 1371 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃))
2019breq2d 5160 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑄 ≀ (𝑃 ∨ 𝑋) ↔ 𝑄 ≀ (𝑋 ∨ 𝑃)))
215, 14, 203imtr4d 293 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ Β¬ 𝑃 ≀ 𝑋) β†’ (𝑃 ≀ (𝑄 ∨ 𝑋) β†’ 𝑄 ≀ (𝑃 ∨ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  Latclat 18383  Atomscatm 38128  CvLatclc 38130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-lub 18298  df-join 18300  df-lat 18384  df-ats 38132  df-atl 38163  df-cvlat 38187
This theorem is referenced by:  hlexch2  38249
  Copyright terms: Public domain W3C validator