Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexchb1 Structured version   Visualization version   GIF version

Theorem cvlexchb1 37344
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexchb1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))

Proof of Theorem cvlexchb1
StepHypRef Expression
1 cvllat 37340 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
21adantr 481 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝐾 ∈ Lat)
3 simpr3 1195 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋𝐵)
4 simpr2 1194 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑄𝐴)
5 cvlexch.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
6 cvlexch.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
75, 6atbase 37303 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
84, 7syl 17 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑄𝐵)
9 cvlexch.l . . . . . . . . 9 = (le‘𝐾)
10 cvlexch.j . . . . . . . . 9 = (join‘𝐾)
115, 9, 10latlej1 18166 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → 𝑋 (𝑋 𝑄))
122, 3, 8, 11syl3anc 1370 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋 (𝑋 𝑄))
13123adant3 1131 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋 (𝑋 𝑄))
1413adantr 481 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑋 (𝑋 𝑄))
15 simpr 485 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
16 simpr1 1193 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐴)
175, 6atbase 37303 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
1816, 17syl 17 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐵)
195, 10latjcl 18157 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
202, 3, 8, 19syl3anc 1370 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (𝑋 𝑄) ∈ 𝐵)
215, 9, 10latjle12 18168 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑃𝐵 ∧ (𝑋 𝑄) ∈ 𝐵)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
222, 3, 18, 20, 21syl13anc 1371 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
23223adant3 1131 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
2423adantr 481 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
2514, 15, 24mpbi2and 709 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑃) (𝑋 𝑄))
265, 9, 10latlej1 18166 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → 𝑋 (𝑋 𝑃))
272, 3, 18, 26syl3anc 1370 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋 (𝑋 𝑃))
28273adant3 1131 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋 (𝑋 𝑃))
2928adantr 481 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑋 (𝑋 𝑃))
305, 9, 10, 6cvlexch1 37342 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
3130imp 407 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))
325, 10latjcl 18157 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
332, 3, 18, 32syl3anc 1370 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (𝑋 𝑃) ∈ 𝐵)
345, 9, 10latjle12 18168 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵 ∧ (𝑋 𝑃) ∈ 𝐵)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
352, 3, 8, 33, 34syl13anc 1371 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
36353adant3 1131 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
3736adantr 481 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
3829, 31, 37mpbi2and 709 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑄) (𝑋 𝑃))
395, 9latasymb 18160 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑃) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
402, 33, 20, 39syl3anc 1370 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
41403adant3 1131 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
4241adantr 481 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
4325, 38, 42mpbi2and 709 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑃) = (𝑋 𝑄))
4443ex 413 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → (𝑋 𝑃) = (𝑋 𝑄)))
455, 9, 10latlej2 18167 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → 𝑃 (𝑋 𝑃))
462, 3, 18, 45syl3anc 1370 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃 (𝑋 𝑃))
47 breq2 5078 . . . 4 ((𝑋 𝑃) = (𝑋 𝑄) → (𝑃 (𝑋 𝑃) ↔ 𝑃 (𝑋 𝑄)))
4846, 47syl5ibcom 244 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 𝑃) = (𝑋 𝑄) → 𝑃 (𝑋 𝑄)))
49483adant3 1131 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 𝑃) = (𝑋 𝑄) → 𝑃 (𝑋 𝑄)))
5044, 49impbid 211 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  CvLatclc 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-ats 37281  df-atl 37312  df-cvlat 37336
This theorem is referenced by:  cvlexchb2  37345  cvlexch4N  37347  cvlatexchb1  37348  cvlcvr1  37353  hlexchb1  37398
  Copyright terms: Public domain W3C validator