Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexchb1 Structured version   Visualization version   GIF version

Theorem cvlexchb1 38106
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexchb1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))

Proof of Theorem cvlexchb1
StepHypRef Expression
1 cvllat 38102 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
21adantr 482 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝐾 ∈ Lat)
3 simpr3 1197 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋𝐵)
4 simpr2 1196 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑄𝐴)
5 cvlexch.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
6 cvlexch.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
75, 6atbase 38065 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
84, 7syl 17 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑄𝐵)
9 cvlexch.l . . . . . . . . 9 = (le‘𝐾)
10 cvlexch.j . . . . . . . . 9 = (join‘𝐾)
115, 9, 10latlej1 18388 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → 𝑋 (𝑋 𝑄))
122, 3, 8, 11syl3anc 1372 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋 (𝑋 𝑄))
13123adant3 1133 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋 (𝑋 𝑄))
1413adantr 482 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑋 (𝑋 𝑄))
15 simpr 486 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
16 simpr1 1195 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐴)
175, 6atbase 38065 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
1816, 17syl 17 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐵)
195, 10latjcl 18379 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
202, 3, 8, 19syl3anc 1372 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (𝑋 𝑄) ∈ 𝐵)
215, 9, 10latjle12 18390 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑃𝐵 ∧ (𝑋 𝑄) ∈ 𝐵)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
222, 3, 18, 20, 21syl13anc 1373 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
23223adant3 1133 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
2423adantr 482 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
2514, 15, 24mpbi2and 711 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑃) (𝑋 𝑄))
265, 9, 10latlej1 18388 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → 𝑋 (𝑋 𝑃))
272, 3, 18, 26syl3anc 1372 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋 (𝑋 𝑃))
28273adant3 1133 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋 (𝑋 𝑃))
2928adantr 482 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑋 (𝑋 𝑃))
305, 9, 10, 6cvlexch1 38104 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
3130imp 408 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))
325, 10latjcl 18379 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
332, 3, 18, 32syl3anc 1372 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (𝑋 𝑃) ∈ 𝐵)
345, 9, 10latjle12 18390 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵 ∧ (𝑋 𝑃) ∈ 𝐵)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
352, 3, 8, 33, 34syl13anc 1373 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
36353adant3 1133 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
3736adantr 482 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
3829, 31, 37mpbi2and 711 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑄) (𝑋 𝑃))
395, 9latasymb 18382 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑃) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
402, 33, 20, 39syl3anc 1372 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
41403adant3 1133 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
4241adantr 482 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
4325, 38, 42mpbi2and 711 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑃) = (𝑋 𝑄))
4443ex 414 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → (𝑋 𝑃) = (𝑋 𝑄)))
455, 9, 10latlej2 18389 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → 𝑃 (𝑋 𝑃))
462, 3, 18, 45syl3anc 1372 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃 (𝑋 𝑃))
47 breq2 5148 . . . 4 ((𝑋 𝑃) = (𝑋 𝑄) → (𝑃 (𝑋 𝑃) ↔ 𝑃 (𝑋 𝑄)))
4846, 47syl5ibcom 244 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 𝑃) = (𝑋 𝑄) → 𝑃 (𝑋 𝑄)))
49483adant3 1133 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 𝑃) = (𝑋 𝑄) → 𝑃 (𝑋 𝑄)))
5044, 49impbid 211 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5144  cfv 6535  (class class class)co 7396  Basecbs 17131  lecple 17191  joincjn 18251  Latclat 18371  Atomscatm 38039  CvLatclc 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-proset 18235  df-poset 18253  df-lub 18286  df-glb 18287  df-join 18288  df-meet 18289  df-lat 18372  df-ats 38043  df-atl 38074  df-cvlat 38098
This theorem is referenced by:  cvlexchb2  38107  cvlexch4N  38109  cvlatexchb1  38110  cvlcvr1  38115  hlexchb1  38161
  Copyright terms: Public domain W3C validator