Proof of Theorem cvlexchb1
Step | Hyp | Ref
| Expression |
1 | | cvllat 37267 |
. . . . . . . . 9
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
2 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝐾 ∈ Lat) |
3 | | simpr3 1194 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
4 | | simpr2 1193 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑄 ∈ 𝐴) |
5 | | cvlexch.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
6 | | cvlexch.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 5, 6 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
8 | 4, 7 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑄 ∈ 𝐵) |
9 | | cvlexch.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
10 | | cvlexch.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
11 | 5, 9, 10 | latlej1 18081 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑄)) |
12 | 2, 3, 8, 11 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ≤ (𝑋 ∨ 𝑄)) |
13 | 12 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑋 ≤ (𝑋 ∨ 𝑄)) |
14 | 13 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑋 ≤ (𝑋 ∨ 𝑄)) |
15 | | simpr 484 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ (𝑋 ∨ 𝑄)) |
16 | | simpr1 1192 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ∈ 𝐴) |
17 | 5, 6 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ∈ 𝐵) |
19 | 5, 10 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
20 | 2, 3, 8, 19 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
21 | 5, 9, 10 | latjle12 18083 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) |
22 | 2, 3, 18, 20, 21 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) |
23 | 22 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) |
24 | 23 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) |
25 | 14, 15, 24 | mpbi2and 708 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄)) |
26 | 5, 9, 10 | latlej1 18081 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑃)) |
27 | 2, 3, 18, 26 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ≤ (𝑋 ∨ 𝑃)) |
28 | 27 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑋 ≤ (𝑋 ∨ 𝑃)) |
29 | 28 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑋 ≤ (𝑋 ∨ 𝑃)) |
30 | 5, 9, 10, 6 | cvlexch1 37269 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
31 | 30 | imp 406 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑄 ≤ (𝑋 ∨ 𝑃)) |
32 | 5, 10 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∨ 𝑃) ∈ 𝐵) |
33 | 2, 3, 18, 32 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ∨ 𝑃) ∈ 𝐵) |
34 | 5, 9, 10 | latjle12 18083 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ (𝑋 ∨ 𝑃) ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) |
35 | 2, 3, 8, 33, 34 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) |
36 | 35 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) |
37 | 36 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) |
38 | 29, 31, 37 | mpbi2and 708 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) |
39 | 5, 9 | latasymb 18075 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑃) ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
40 | 2, 33, 20, 39 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
41 | 40 | 3adant3 1130 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
42 | 41 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
43 | 25, 38, 42 | mpbi2and 708 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄)) |
44 | 43 | ex 412 |
. 2
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
45 | 5, 9, 10 | latlej2 18082 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → 𝑃 ≤ (𝑋 ∨ 𝑃)) |
46 | 2, 3, 18, 45 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ≤ (𝑋 ∨ 𝑃)) |
47 | | breq2 5074 |
. . . 4
⊢ ((𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄) → (𝑃 ≤ (𝑋 ∨ 𝑃) ↔ 𝑃 ≤ (𝑋 ∨ 𝑄))) |
48 | 46, 47 | syl5ibcom 244 |
. . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄) → 𝑃 ≤ (𝑋 ∨ 𝑄))) |
49 | 48 | 3adant3 1130 |
. 2
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄) → 𝑃 ≤ (𝑋 ∨ 𝑄))) |
50 | 44, 49 | impbid 211 |
1
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |