Proof of Theorem cvlexchb1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvllat 39327 | . . . . . . . . 9
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | 
| 2 | 1 | adantr 480 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝐾 ∈ Lat) | 
| 3 |  | simpr3 1197 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 4 |  | simpr2 1196 | . . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑄 ∈ 𝐴) | 
| 5 |  | cvlexch.b | . . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) | 
| 6 |  | cvlexch.a | . . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 | 5, 6 | atbase 39290 | . . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) | 
| 8 | 4, 7 | syl 17 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑄 ∈ 𝐵) | 
| 9 |  | cvlexch.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 10 |  | cvlexch.j | . . . . . . . . 9
⊢  ∨ =
(join‘𝐾) | 
| 11 | 5, 9, 10 | latlej1 18493 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑄)) | 
| 12 | 2, 3, 8, 11 | syl3anc 1373 | . . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ≤ (𝑋 ∨ 𝑄)) | 
| 13 | 12 | 3adant3 1133 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑋 ≤ (𝑋 ∨ 𝑄)) | 
| 14 | 13 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑋 ≤ (𝑋 ∨ 𝑄)) | 
| 15 |  | simpr 484 | . . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ (𝑋 ∨ 𝑄)) | 
| 16 |  | simpr1 1195 | . . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | 
| 17 | 5, 6 | atbase 39290 | . . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 18 | 16, 17 | syl 17 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ∈ 𝐵) | 
| 19 | 5, 10 | latjcl 18484 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) | 
| 20 | 2, 3, 8, 19 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ∨ 𝑄) ∈ 𝐵) | 
| 21 | 5, 9, 10 | latjle12 18495 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) | 
| 22 | 2, 3, 18, 20, 21 | syl13anc 1374 | . . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) | 
| 23 | 22 | 3adant3 1133 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) | 
| 24 | 23 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ≤ (𝑋 ∨ 𝑄) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) ↔ (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄))) | 
| 25 | 14, 15, 24 | mpbi2and 712 | . . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄)) | 
| 26 | 5, 9, 10 | latlej1 18493 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑃)) | 
| 27 | 2, 3, 18, 26 | syl3anc 1373 | . . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ≤ (𝑋 ∨ 𝑃)) | 
| 28 | 27 | 3adant3 1133 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑋 ≤ (𝑋 ∨ 𝑃)) | 
| 29 | 28 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑋 ≤ (𝑋 ∨ 𝑃)) | 
| 30 | 5, 9, 10, 6 | cvlexch1 39329 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | 
| 31 | 30 | imp 406 | . . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑄 ≤ (𝑋 ∨ 𝑃)) | 
| 32 | 5, 10 | latjcl 18484 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∨ 𝑃) ∈ 𝐵) | 
| 33 | 2, 3, 18, 32 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ∨ 𝑃) ∈ 𝐵) | 
| 34 | 5, 9, 10 | latjle12 18495 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ (𝑋 ∨ 𝑃) ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) | 
| 35 | 2, 3, 8, 33, 34 | syl13anc 1374 | . . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) | 
| 36 | 35 | 3adant3 1133 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) | 
| 37 | 36 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ≤ (𝑋 ∨ 𝑃) ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃))) | 
| 38 | 29, 31, 37 | mpbi2and 712 | . . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) | 
| 39 | 5, 9 | latasymb 18487 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑃) ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | 
| 40 | 2, 33, 20, 39 | syl3anc 1373 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | 
| 41 | 40 | 3adant3 1133 | . . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | 
| 42 | 41 | adantr 480 | . . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (((𝑋 ∨ 𝑃) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ 𝑃)) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | 
| 43 | 25, 38, 42 | mpbi2and 712 | . . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄)) | 
| 44 | 43 | ex 412 | . 2
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | 
| 45 | 5, 9, 10 | latlej2 18494 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → 𝑃 ≤ (𝑋 ∨ 𝑃)) | 
| 46 | 2, 3, 18, 45 | syl3anc 1373 | . . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ≤ (𝑋 ∨ 𝑃)) | 
| 47 |  | breq2 5147 | . . . 4
⊢ ((𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄) → (𝑃 ≤ (𝑋 ∨ 𝑃) ↔ 𝑃 ≤ (𝑋 ∨ 𝑄))) | 
| 48 | 46, 47 | syl5ibcom 245 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄) → 𝑃 ≤ (𝑋 ∨ 𝑄))) | 
| 49 | 48 | 3adant3 1133 | . 2
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄) → 𝑃 ≤ (𝑋 ∨ 𝑄))) | 
| 50 | 44, 49 | impbid 212 | 1
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |