Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmfcoafv | Structured version Visualization version GIF version |
Description: Domains of a function composition, analogous to dmfco 6864. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
dmfcoafv | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmfco 6864 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝐴) ∈ dom 𝐹)) | |
2 | funres 6476 | . . . . . . 7 ⊢ (Fun 𝐺 → Fun (𝐺 ↾ {𝐴})) | |
3 | 2 | anim2i 617 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
4 | 3 | ancoms 459 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
5 | df-dfat 44611 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) | |
6 | afvfundmfveq 44630 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 → (𝐺'''𝐴) = (𝐺‘𝐴)) | |
7 | 5, 6 | sylbir 234 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
9 | 8 | eqcomd 2744 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺‘𝐴) = (𝐺'''𝐴)) |
10 | 9 | eleq1d 2823 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐺‘𝐴) ∈ dom 𝐹 ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
11 | 1, 10 | bitrd 278 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 dom cdm 5589 ↾ cres 5591 ∘ ccom 5593 Fun wfun 6427 ‘cfv 6433 defAt wdfat 44608 '''cafv 44609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-aiota 44577 df-dfat 44611 df-afv 44612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |