![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmfcoafv | Structured version Visualization version GIF version |
Description: Domains of a function composition, analogous to dmfco 7018. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
dmfcoafv | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmfco 7018 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝐴) ∈ dom 𝐹)) | |
2 | funres 6620 | . . . . . . 7 ⊢ (Fun 𝐺 → Fun (𝐺 ↾ {𝐴})) | |
3 | 2 | anim2i 616 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
4 | 3 | ancoms 458 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
5 | df-dfat 47034 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) | |
6 | afvfundmfveq 47053 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 → (𝐺'''𝐴) = (𝐺‘𝐴)) | |
7 | 5, 6 | sylbir 235 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
9 | 8 | eqcomd 2746 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺‘𝐴) = (𝐺'''𝐴)) |
10 | 9 | eleq1d 2829 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐺‘𝐴) ∈ dom 𝐹 ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
11 | 1, 10 | bitrd 279 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 Fun wfun 6567 ‘cfv 6573 defAt wdfat 47031 '''cafv 47032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |