Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmfcoafv Structured version   Visualization version   GIF version

Theorem dmfcoafv 42778
Description: Domains of a function composition, analogous to dmfco 6585. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
dmfcoafv ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹))

Proof of Theorem dmfcoafv
StepHypRef Expression
1 dmfco 6585 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
2 funres 6230 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ↾ {𝐴}))
32anim2i 607 . . . . . 6 ((𝐴 ∈ dom 𝐺 ∧ Fun 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
43ancoms 451 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
5 df-dfat 42722 . . . . . 6 (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
6 afvfundmfveq 42741 . . . . . 6 (𝐺 defAt 𝐴 → (𝐺'''𝐴) = (𝐺𝐴))
75, 6sylbir 227 . . . . 5 ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐺'''𝐴) = (𝐺𝐴))
84, 7syl 17 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺'''𝐴) = (𝐺𝐴))
98eqcomd 2785 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺𝐴) = (𝐺'''𝐴))
109eleq1d 2851 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ (𝐺'''𝐴) ∈ dom 𝐹))
111, 10bitrd 271 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  {csn 4441  dom cdm 5407  cres 5409  ccom 5411  Fun wfun 6182  cfv 6188   defAt wdfat 42719  '''cafv 42720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-int 4750  df-br 4930  df-opab 4992  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-res 5419  df-iota 6152  df-fun 6190  df-fn 6191  df-fv 6196  df-aiota 42689  df-dfat 42722  df-afv 42723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator