![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmfcoafv | Structured version Visualization version GIF version |
Description: Domains of a function composition, analogous to dmfco 6981. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
dmfcoafv | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmfco 6981 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝐴) ∈ dom 𝐹)) | |
2 | funres 6584 | . . . . . . 7 ⊢ (Fun 𝐺 → Fun (𝐺 ↾ {𝐴})) | |
3 | 2 | anim2i 616 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
4 | 3 | ancoms 458 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
5 | df-dfat 46399 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) | |
6 | afvfundmfveq 46418 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 → (𝐺'''𝐴) = (𝐺‘𝐴)) | |
7 | 5, 6 | sylbir 234 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
9 | 8 | eqcomd 2732 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺‘𝐴) = (𝐺'''𝐴)) |
10 | 9 | eleq1d 2812 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐺‘𝐴) ∈ dom 𝐹 ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
11 | 1, 10 | bitrd 279 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4623 dom cdm 5669 ↾ cres 5671 ∘ ccom 5673 Fun wfun 6531 ‘cfv 6537 defAt wdfat 46396 '''cafv 46397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6489 df-fun 6539 df-fn 6540 df-fv 6545 df-aiota 46365 df-dfat 46399 df-afv 46400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |