| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmfcoafv | Structured version Visualization version GIF version | ||
| Description: Domains of a function composition, analogous to dmfco 6986. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| dmfcoafv | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmfco 6986 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝐴) ∈ dom 𝐹)) | |
| 2 | funres 6589 | . . . . . . 7 ⊢ (Fun 𝐺 → Fun (𝐺 ↾ {𝐴})) | |
| 3 | 2 | anim2i 617 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
| 4 | 3 | ancoms 458 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) |
| 5 | df-dfat 47077 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴}))) | |
| 6 | afvfundmfveq 47096 | . . . . . 6 ⊢ (𝐺 defAt 𝐴 → (𝐺'''𝐴) = (𝐺‘𝐴)) | |
| 7 | 5, 6 | sylbir 235 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺'''𝐴) = (𝐺‘𝐴)) |
| 9 | 8 | eqcomd 2740 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐺‘𝐴) = (𝐺'''𝐴)) |
| 10 | 9 | eleq1d 2818 | . 2 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐺‘𝐴) ∈ dom 𝐹 ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
| 11 | 1, 10 | bitrd 279 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4608 dom cdm 5667 ↾ cres 5669 ∘ ccom 5671 Fun wfun 6536 ‘cfv 6542 defAt wdfat 47074 '''cafv 47075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 df-aiota 47043 df-dfat 47077 df-afv 47078 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |