Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmfcoafv Structured version   Visualization version   GIF version

Theorem dmfcoafv 47133
Description: Domains of a function composition, analogous to dmfco 6986. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
dmfcoafv ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹))

Proof of Theorem dmfcoafv
StepHypRef Expression
1 dmfco 6986 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
2 funres 6589 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ↾ {𝐴}))
32anim2i 617 . . . . . 6 ((𝐴 ∈ dom 𝐺 ∧ Fun 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
43ancoms 458 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
5 df-dfat 47077 . . . . . 6 (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
6 afvfundmfveq 47096 . . . . . 6 (𝐺 defAt 𝐴 → (𝐺'''𝐴) = (𝐺𝐴))
75, 6sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐺'''𝐴) = (𝐺𝐴))
84, 7syl 17 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺'''𝐴) = (𝐺𝐴))
98eqcomd 2740 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺𝐴) = (𝐺'''𝐴))
109eleq1d 2818 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ (𝐺'''𝐴) ∈ dom 𝐹))
111, 10bitrd 279 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {csn 4608  dom cdm 5667  cres 5669  ccom 5671  Fun wfun 6536  cfv 6542   defAt wdfat 47074  '''cafv 47075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-res 5679  df-iota 6495  df-fun 6544  df-fn 6545  df-fv 6550  df-aiota 47043  df-dfat 47077  df-afv 47078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator