| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
| nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47158 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | nfdm 5890 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | 2, 4 | nfel 2909 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
| 6 | 2 | nfsn 4657 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
| 7 | 3, 6 | nfres 5929 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
| 8 | 7 | nffun 6504 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
| 9 | 5, 8 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
| 10 | 1, 9 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 {csn 4573 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 defAt wdfat 47155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-fun 6483 df-dfat 47158 |
| This theorem is referenced by: nfafv 47175 nfafv2 47257 |
| Copyright terms: Public domain | W3C validator |