Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 44498 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
4 | 3 | nfdm 5849 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | 2, 4 | nfel 2920 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
6 | 2 | nfsn 4640 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
7 | 3, 6 | nfres 5882 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
8 | 7 | nffun 6441 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | nfan 1903 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 1, 9 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 {csn 4558 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 defAt wdfat 44495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-fun 6420 df-dfat 44498 |
This theorem is referenced by: nfafv 44515 nfafv2 44597 |
Copyright terms: Public domain | W3C validator |