Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfdfat Structured version   Visualization version   GIF version

Theorem nfdfat 47031
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, , etc.). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
nfdfat.1 𝑥𝐹
nfdfat.2 𝑥𝐴
Assertion
Ref Expression
nfdfat 𝑥 𝐹 defAt 𝐴

Proof of Theorem nfdfat
StepHypRef Expression
1 df-dfat 47023 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 nfdfat.2 . . . 4 𝑥𝐴
3 nfdfat.1 . . . . 5 𝑥𝐹
43nfdm 5971 . . . 4 𝑥dom 𝐹
52, 4nfel 2923 . . 3 𝑥 𝐴 ∈ dom 𝐹
62nfsn 4732 . . . . 5 𝑥{𝐴}
73, 6nfres 6006 . . . 4 𝑥(𝐹 ↾ {𝐴})
87nffun 6596 . . 3 𝑥Fun (𝐹 ↾ {𝐴})
95, 8nfan 1898 . 2 𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
101, 9nfxfr 1851 1 𝑥 𝐹 defAt 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1781  wcel 2108  wnfc 2893  {csn 4648  dom cdm 5695  cres 5697  Fun wfun 6562   defAt wdfat 47020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-res 5707  df-fun 6570  df-dfat 47023
This theorem is referenced by:  nfafv  47040  nfafv2  47122
  Copyright terms: Public domain W3C validator