| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
| nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47124 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | nfdm 5918 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | 2, 4 | nfel 2907 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
| 6 | 2 | nfsn 4674 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
| 7 | 3, 6 | nfres 5955 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
| 8 | 7 | nffun 6542 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
| 9 | 5, 8 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
| 10 | 1, 9 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 {csn 4592 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 defAt wdfat 47121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-fun 6516 df-dfat 47124 |
| This theorem is referenced by: nfafv 47141 nfafv2 47223 |
| Copyright terms: Public domain | W3C validator |