| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
| nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47089 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | nfdm 5942 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | 2, 4 | nfel 2912 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
| 6 | 2 | nfsn 4687 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
| 7 | 3, 6 | nfres 5979 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
| 8 | 7 | nffun 6569 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
| 9 | 5, 8 | nfan 1898 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
| 10 | 1, 9 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 {csn 4606 dom cdm 5665 ↾ cres 5667 Fun wfun 6535 defAt wdfat 47086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-fun 6543 df-dfat 47089 |
| This theorem is referenced by: nfafv 47106 nfafv2 47188 |
| Copyright terms: Public domain | W3C validator |