| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
| nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47093 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | nfdm 5904 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | 2, 4 | nfel 2906 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
| 6 | 2 | nfsn 4667 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
| 7 | 3, 6 | nfres 5941 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
| 8 | 7 | nffun 6523 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
| 9 | 5, 8 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
| 10 | 1, 9 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 {csn 4585 dom cdm 5631 ↾ cres 5633 Fun wfun 6493 defAt wdfat 47090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-fun 6501 df-dfat 47093 |
| This theorem is referenced by: nfafv 47110 nfafv2 47192 |
| Copyright terms: Public domain | W3C validator |