Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfdfat Structured version   Visualization version   GIF version

Theorem nfdfat 47104
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, , etc.). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
nfdfat.1 𝑥𝐹
nfdfat.2 𝑥𝐴
Assertion
Ref Expression
nfdfat 𝑥 𝐹 defAt 𝐴

Proof of Theorem nfdfat
StepHypRef Expression
1 df-dfat 47096 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 nfdfat.2 . . . 4 𝑥𝐴
3 nfdfat.1 . . . . 5 𝑥𝐹
43nfdm 5931 . . . 4 𝑥dom 𝐹
52, 4nfel 2913 . . 3 𝑥 𝐴 ∈ dom 𝐹
62nfsn 4683 . . . . 5 𝑥{𝐴}
73, 6nfres 5968 . . . 4 𝑥(𝐹 ↾ {𝐴})
87nffun 6558 . . 3 𝑥Fun (𝐹 ↾ {𝐴})
95, 8nfan 1899 . 2 𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
101, 9nfxfr 1853 1 𝑥 𝐹 defAt 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1783  wcel 2108  wnfc 2883  {csn 4601  dom cdm 5654  cres 5656  Fun wfun 6524   defAt wdfat 47093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-fun 6532  df-dfat 47096
This theorem is referenced by:  nfafv  47113  nfafv2  47195
  Copyright terms: Public domain W3C validator