Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfdfat Structured version   Visualization version   GIF version

Theorem nfdfat 47034
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, , etc.). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
nfdfat.1 𝑥𝐹
nfdfat.2 𝑥𝐴
Assertion
Ref Expression
nfdfat 𝑥 𝐹 defAt 𝐴

Proof of Theorem nfdfat
StepHypRef Expression
1 df-dfat 47026 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 nfdfat.2 . . . 4 𝑥𝐴
3 nfdfat.1 . . . . 5 𝑥𝐹
43nfdm 5960 . . . 4 𝑥dom 𝐹
52, 4nfel 2916 . . 3 𝑥 𝐴 ∈ dom 𝐹
62nfsn 4715 . . . . 5 𝑥{𝐴}
73, 6nfres 5997 . . . 4 𝑥(𝐹 ↾ {𝐴})
87nffun 6587 . . 3 𝑥Fun (𝐹 ↾ {𝐴})
95, 8nfan 1895 . 2 𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
101, 9nfxfr 1848 1 𝑥 𝐹 defAt 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1778  wcel 2104  wnfc 2886  {csn 4631  dom cdm 5684  cres 5686  Fun wfun 6553   defAt wdfat 47023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ral 3058  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5151  df-opab 5213  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-res 5696  df-fun 6561  df-dfat 47026
This theorem is referenced by:  nfafv  47043  nfafv2  47125
  Copyright terms: Public domain W3C validator