Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfdfat Structured version   Visualization version   GIF version

Theorem nfdfat 47097
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, , etc.). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
nfdfat.1 𝑥𝐹
nfdfat.2 𝑥𝐴
Assertion
Ref Expression
nfdfat 𝑥 𝐹 defAt 𝐴

Proof of Theorem nfdfat
StepHypRef Expression
1 df-dfat 47089 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 nfdfat.2 . . . 4 𝑥𝐴
3 nfdfat.1 . . . . 5 𝑥𝐹
43nfdm 5942 . . . 4 𝑥dom 𝐹
52, 4nfel 2912 . . 3 𝑥 𝐴 ∈ dom 𝐹
62nfsn 4687 . . . . 5 𝑥{𝐴}
73, 6nfres 5979 . . . 4 𝑥(𝐹 ↾ {𝐴})
87nffun 6569 . . 3 𝑥Fun (𝐹 ↾ {𝐴})
95, 8nfan 1898 . 2 𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
101, 9nfxfr 1852 1 𝑥 𝐹 defAt 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1782  wcel 2107  wnfc 2882  {csn 4606  dom cdm 5665  cres 5667  Fun wfun 6535   defAt wdfat 47086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-fun 6543  df-dfat 47089
This theorem is referenced by:  nfafv  47106  nfafv2  47188
  Copyright terms: Public domain W3C validator