![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 47023 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
4 | 3 | nfdm 5971 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | 2, 4 | nfel 2923 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
6 | 2 | nfsn 4732 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
7 | 3, 6 | nfres 6006 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
8 | 7 | nffun 6596 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | nfan 1898 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 1, 9 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 {csn 4648 dom cdm 5695 ↾ cres 5697 Fun wfun 6562 defAt wdfat 47020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-res 5707 df-fun 6570 df-dfat 47023 |
This theorem is referenced by: nfafv 47040 nfafv2 47122 |
Copyright terms: Public domain | W3C validator |