![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfdfat | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nfdfat.1 | ⊢ Ⅎ𝑥𝐹 |
nfdfat.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdfat | ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 46528 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | nfdfat.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfdfat.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
4 | 3 | nfdm 5957 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | 2, 4 | nfel 2914 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ dom 𝐹 |
6 | 2 | nfsn 4716 | . . . . 5 ⊢ Ⅎ𝑥{𝐴} |
7 | 3, 6 | nfres 5991 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ↾ {𝐴}) |
8 | 7 | nffun 6581 | . . 3 ⊢ Ⅎ𝑥Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | nfan 1894 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 1, 9 | nfxfr 1847 | 1 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2879 {csn 4632 dom cdm 5682 ↾ cres 5684 Fun wfun 6547 defAt wdfat 46525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-fun 6555 df-dfat 46528 |
This theorem is referenced by: nfafv 46545 nfafv2 46627 |
Copyright terms: Public domain | W3C validator |