![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovmpt4g | Structured version Visualization version GIF version |
Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7551. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
aovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpog 8060 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) |
3 | opelxpi 5706 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) | |
4 | eleq2 2816 | . . . . . . 7 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))) | |
5 | 3, 4 | imbitrrid 245 | . . . . . 6 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)) |
7 | 6 | impcom 407 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝐶 ∈ 𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) |
8 | 7 | 3impa 1107 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹) |
9 | 1 | mpofun 7528 | . . . 4 ⊢ Fun 𝐹 |
10 | funres 6584 | . . . 4 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩}) |
12 | df-dfat 46399 | . . . 4 ⊢ (𝐹 defAt ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩}))) | |
13 | aovfundmoveq 46461 | . . . 4 ⊢ (𝐹 defAt ⟨𝑥, 𝑦⟩ → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) | |
14 | 12, 13 | sylbir 234 | . . 3 ⊢ ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
15 | 8, 11, 14 | sylancl 585 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
16 | 1 | ovmpt4g 7551 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
17 | 15, 16 | eqtrd 2766 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {csn 4623 ⟨cop 4629 × cxp 5667 dom cdm 5669 ↾ cres 5671 Fun wfun 6531 (class class class)co 7405 ∈ cmpo 7407 defAt wdfat 46396 ((caov 46398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-aiota 46365 df-dfat 46399 df-afv 46400 df-aov 46401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |