Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovmpt4g Structured version   Visualization version   GIF version

Theorem aovmpt4g 47189
Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7496. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovmpt4g.3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
aovmpt4g ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem aovmpt4g
StepHypRef Expression
1 aovmpt4g.3 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21dmmpog 8009 . . . . . 6 (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
3 opelxpi 5656 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
4 eleq2 2817 . . . . . . 7 (dom 𝐹 = (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
53, 4imbitrrid 246 . . . . . 6 (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
62, 5syl 17 . . . . 5 (𝐶𝑉 → ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
76impcom 407 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝐶𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
873impa 1109 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
91mpofun 7473 . . . 4 Fun 𝐹
10 funres 6524 . . . 4 (Fun 𝐹 → Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩}))
119, 10ax-mp 5 . . 3 Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})
12 df-dfat 47107 . . . 4 (𝐹 defAt ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})))
13 aovfundmoveq 47169 . . . 4 (𝐹 defAt ⟨𝑥, 𝑦⟩ → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
1412, 13sylbir 235 . . 3 ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
158, 11, 14sylancl 586 . 2 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
161ovmpt4g 7496 . 2 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
1715, 16eqtrd 2764 1 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4577  cop 4583   × cxp 5617  dom cdm 5619  cres 5621  Fun wfun 6476  (class class class)co 7349  cmpo 7351   defAt wdfat 47104   ((caov 47106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-aiota 47073  df-dfat 47107  df-afv 47108  df-aov 47109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator