Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovmpt4g | Structured version Visualization version GIF version |
Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7398. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
aovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpog 7888 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) |
3 | opelxpi 5617 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | |
4 | eleq2 2827 | . . . . . . 7 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ dom 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
5 | 3, 4 | syl5ibr 245 | . . . . . 6 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
7 | 6 | impcom 407 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
8 | 7 | 3impa 1108 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
9 | 1 | mpofun 7376 | . . . 4 ⊢ Fun 𝐹 |
10 | funres 6460 | . . . 4 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}) |
12 | df-dfat 44498 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 ↔ (〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}))) | |
13 | aovfundmoveq 44560 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) | |
14 | 12, 13 | sylbir 234 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
15 | 8, 11, 14 | sylancl 585 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
16 | 1 | ovmpt4g 7398 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
17 | 15, 16 | eqtrd 2778 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 × cxp 5578 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 (class class class)co 7255 ∈ cmpo 7257 defAt wdfat 44495 ((caov 44497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-aiota 44464 df-dfat 44498 df-afv 44499 df-aov 44500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |