| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovmpt4g | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7496. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| aovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | dmmpog 8009 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) |
| 3 | opelxpi 5656 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | |
| 4 | eleq2 2817 | . . . . . . 7 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ dom 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
| 5 | 3, 4 | imbitrrid 246 | . . . . . 6 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
| 7 | 6 | impcom 407 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 8 | 7 | 3impa 1109 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 9 | 1 | mpofun 7473 | . . . 4 ⊢ Fun 𝐹 |
| 10 | funres 6524 | . . . 4 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}) |
| 12 | df-dfat 47107 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 ↔ (〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}))) | |
| 13 | aovfundmoveq 47169 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) | |
| 14 | 12, 13 | sylbir 235 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
| 15 | 8, 11, 14 | sylancl 586 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
| 16 | 1 | ovmpt4g 7496 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
| 17 | 15, 16 | eqtrd 2764 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4577 〈cop 4583 × cxp 5617 dom cdm 5619 ↾ cres 5621 Fun wfun 6476 (class class class)co 7349 ∈ cmpo 7351 defAt wdfat 47104 ((caov 47106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-aiota 47073 df-dfat 47107 df-afv 47108 df-aov 47109 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |