Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovmpt4g | Structured version Visualization version GIF version |
Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7297. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
aovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpog 7782 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) |
3 | opelxpi 5564 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | |
4 | eleq2 2840 | . . . . . . 7 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ dom 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
5 | 3, 4 | syl5ibr 249 | . . . . . 6 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
7 | 6 | impcom 411 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
8 | 7 | 3impa 1107 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
9 | 1 | mpofun 7275 | . . . 4 ⊢ Fun 𝐹 |
10 | funres 6381 | . . . 4 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}) |
12 | df-dfat 44071 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 ↔ (〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}))) | |
13 | aovfundmoveq 44133 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) | |
14 | 12, 13 | sylbir 238 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
15 | 8, 11, 14 | sylancl 589 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
16 | 1 | ovmpt4g 7297 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
17 | 15, 16 | eqtrd 2793 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {csn 4525 〈cop 4531 × cxp 5525 dom cdm 5527 ↾ cres 5529 Fun wfun 6333 (class class class)co 7155 ∈ cmpo 7157 defAt wdfat 44068 ((caov 44070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-aiota 44036 df-dfat 44071 df-afv 44072 df-aov 44073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |