Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovmpt4g Structured version   Visualization version   GIF version

Theorem aovmpt4g 46481
Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7551. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovmpt4g.3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
aovmpt4g ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem aovmpt4g
StepHypRef Expression
1 aovmpt4g.3 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21dmmpog 8060 . . . . . 6 (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
3 opelxpi 5706 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
4 eleq2 2816 . . . . . . 7 (dom 𝐹 = (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
53, 4imbitrrid 245 . . . . . 6 (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
62, 5syl 17 . . . . 5 (𝐶𝑉 → ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
76impcom 407 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝐶𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
873impa 1107 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
91mpofun 7528 . . . 4 Fun 𝐹
10 funres 6584 . . . 4 (Fun 𝐹 → Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩}))
119, 10ax-mp 5 . . 3 Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})
12 df-dfat 46399 . . . 4 (𝐹 defAt ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})))
13 aovfundmoveq 46461 . . . 4 (𝐹 defAt ⟨𝑥, 𝑦⟩ → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
1412, 13sylbir 234 . . 3 ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
158, 11, 14sylancl 585 . 2 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
161ovmpt4g 7551 . 2 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
1715, 16eqtrd 2766 1 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  {csn 4623  cop 4629   × cxp 5667  dom cdm 5669  cres 5671  Fun wfun 6531  (class class class)co 7405  cmpo 7407   defAt wdfat 46396   ((caov 46398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-aiota 46365  df-dfat 46399  df-afv 46400  df-aov 46401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator