| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovmpt4g | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation, analogous to ovmpt4g 7563. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| aovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | dmmpog 8082 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) |
| 3 | opelxpi 5704 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | |
| 4 | eleq2 2822 | . . . . . . 7 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ dom 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
| 5 | 3, 4 | imbitrrid 246 | . . . . . 6 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
| 7 | 6 | impcom 407 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 8 | 7 | 3impa 1109 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
| 9 | 1 | mpofun 7540 | . . . 4 ⊢ Fun 𝐹 |
| 10 | funres 6589 | . . . 4 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}) |
| 12 | df-dfat 47077 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 ↔ (〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}))) | |
| 13 | aovfundmoveq 47139 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) | |
| 14 | 12, 13 | sylbir 235 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
| 15 | 8, 11, 14 | sylancl 586 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
| 16 | 1 | ovmpt4g 7563 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
| 17 | 15, 16 | eqtrd 2769 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {csn 4608 〈cop 4614 × cxp 5665 dom cdm 5667 ↾ cres 5669 Fun wfun 6536 (class class class)co 7414 ∈ cmpo 7416 defAt wdfat 47074 ((caov 47076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-aiota 47043 df-dfat 47077 df-afv 47078 df-aov 47079 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |