Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmafv Structured version   Visualization version   GIF version

Theorem ndmafv 46520
Description: The value of a class outside its domain is the universe, compare with ndmfv 6932. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ndmafv 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V)

Proof of Theorem ndmafv
StepHypRef Expression
1 df-dfat 46499 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
21simplbi 497 . 2 (𝐹 defAt 𝐴𝐴 ∈ dom 𝐹)
3 afvnfundmuv 46519 . 2 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V)
42, 3nsyl5 159 1 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  dom cdm 5678  cres 5680  Fun wfun 6542   defAt wdfat 46496  '''cafv 46497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6500  df-fun 6550  df-fv 6556  df-aiota 46465  df-dfat 46499  df-afv 46500
This theorem is referenced by:  afvvdm  46521  afvprc  46524  afvco2  46556  ndmaov  46563  aovprc  46568
  Copyright terms: Public domain W3C validator