![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmafv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the universe, compare with ndmfv 6950. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ndmafv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 47023 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 defAt 𝐴 → 𝐴 ∈ dom 𝐹) |
3 | afvnfundmuv 47043 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | |
4 | 2, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 dom cdm 5695 ↾ cres 5697 Fun wfun 6562 defAt wdfat 47020 '''cafv 47021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-res 5707 df-iota 6520 df-fun 6570 df-fv 6576 df-aiota 46989 df-dfat 47023 df-afv 47024 |
This theorem is referenced by: afvvdm 47045 afvprc 47048 afvco2 47080 ndmaov 47087 aovprc 47092 |
Copyright terms: Public domain | W3C validator |