Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmafv Structured version   Visualization version   GIF version

Theorem ndmafv 45848
Description: The value of a class outside its domain is the universe, compare with ndmfv 6927. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
ndmafv 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V)

Proof of Theorem ndmafv
StepHypRef Expression
1 df-dfat 45827 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
21simplbi 499 . 2 (𝐹 defAt 𝐴𝐴 ∈ dom 𝐹)
3 afvnfundmuv 45847 . 2 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V)
42, 3nsyl5 159 1 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4629  dom cdm 5677  cres 5679  Fun wfun 6538   defAt wdfat 45824  '''cafv 45825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-aiota 45793  df-dfat 45827  df-afv 45828
This theorem is referenced by:  afvvdm  45849  afvprc  45852  afvco2  45884  ndmaov  45891  aovprc  45896
  Copyright terms: Public domain W3C validator