Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfateq12d | Structured version Visualization version GIF version |
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
dfateq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
dfateq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
dfateq12d | ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfateq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfateq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | dmeqd 5803 | . . . 4 ⊢ (𝜑 → dom 𝐹 = dom 𝐺) |
4 | 1, 3 | eleq12d 2833 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ↔ 𝐵 ∈ dom 𝐺)) |
5 | 1 | sneqd 4570 | . . . . 5 ⊢ (𝜑 → {𝐴} = {𝐵}) |
6 | 2, 5 | reseq12d 5881 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵})) |
7 | 6 | funeqd 6440 | . . 3 ⊢ (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵}))) |
8 | 4, 7 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))) |
9 | df-dfat 44498 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 44498 | . 2 ⊢ (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))) | |
11 | 8, 9, 10 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 defAt wdfat 44495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-fun 6420 df-dfat 44498 |
This theorem is referenced by: afveq12d 44512 afv2eq12d 44594 |
Copyright terms: Public domain | W3C validator |