Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfateq12d Structured version   Visualization version   GIF version

Theorem dfateq12d 46132
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
dfateq12d.1 (𝜑𝐹 = 𝐺)
dfateq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
dfateq12d (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))

Proof of Theorem dfateq12d
StepHypRef Expression
1 dfateq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
2 dfateq12d.1 . . . . 5 (𝜑𝐹 = 𝐺)
32dmeqd 5904 . . . 4 (𝜑 → dom 𝐹 = dom 𝐺)
41, 3eleq12d 2825 . . 3 (𝜑 → (𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐺))
51sneqd 4639 . . . . 5 (𝜑 → {𝐴} = {𝐵})
62, 5reseq12d 5981 . . . 4 (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵}))
76funeqd 6569 . . 3 (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵})))
84, 7anbi12d 629 . 2 (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))))
9 df-dfat 46125 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 46125 . 2 (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))
118, 9, 103bitr4g 313 1 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  {csn 4627  dom cdm 5675  cres 5677  Fun wfun 6536   defAt wdfat 46122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-fun 6544  df-dfat 46125
This theorem is referenced by:  afveq12d  46139  afv2eq12d  46221
  Copyright terms: Public domain W3C validator