| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfateq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| dfateq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| dfateq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dfateq12d | ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfateq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfateq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 3 | 2 | dmeqd 5851 | . . . 4 ⊢ (𝜑 → dom 𝐹 = dom 𝐺) |
| 4 | 1, 3 | eleq12d 2827 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ↔ 𝐵 ∈ dom 𝐺)) |
| 5 | 1 | sneqd 4589 | . . . . 5 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| 6 | 2, 5 | reseq12d 5935 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵})) |
| 7 | 6 | funeqd 6510 | . . 3 ⊢ (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵}))) |
| 8 | 4, 7 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))) |
| 9 | df-dfat 47246 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 10 | df-dfat 47246 | . 2 ⊢ (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))) | |
| 11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 dom cdm 5621 ↾ cres 5623 Fun wfun 6482 defAt wdfat 47243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-fun 6490 df-dfat 47246 |
| This theorem is referenced by: afveq12d 47260 afv2eq12d 47342 |
| Copyright terms: Public domain | W3C validator |