Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfateq12d Structured version   Visualization version   GIF version

Theorem dfateq12d 47103
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
dfateq12d.1 (𝜑𝐹 = 𝐺)
dfateq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
dfateq12d (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))

Proof of Theorem dfateq12d
StepHypRef Expression
1 dfateq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
2 dfateq12d.1 . . . . 5 (𝜑𝐹 = 𝐺)
32dmeqd 5885 . . . 4 (𝜑 → dom 𝐹 = dom 𝐺)
41, 3eleq12d 2828 . . 3 (𝜑 → (𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐺))
51sneqd 4613 . . . . 5 (𝜑 → {𝐴} = {𝐵})
62, 5reseq12d 5967 . . . 4 (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵}))
76funeqd 6557 . . 3 (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵})))
84, 7anbi12d 632 . 2 (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))))
9 df-dfat 47096 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 47096 . 2 (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))
118, 9, 103bitr4g 314 1 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4601  dom cdm 5654  cres 5656  Fun wfun 6524   defAt wdfat 47093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-fun 6532  df-dfat 47096
This theorem is referenced by:  afveq12d  47110  afv2eq12d  47192
  Copyright terms: Public domain W3C validator