Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfateq12d Structured version   Visualization version   GIF version

Theorem dfateq12d 43473
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
dfateq12d.1 (𝜑𝐹 = 𝐺)
dfateq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
dfateq12d (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))

Proof of Theorem dfateq12d
StepHypRef Expression
1 dfateq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
2 dfateq12d.1 . . . . 5 (𝜑𝐹 = 𝐺)
32dmeqd 5750 . . . 4 (𝜑 → dom 𝐹 = dom 𝐺)
41, 3eleq12d 2905 . . 3 (𝜑 → (𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐺))
51sneqd 4555 . . . . 5 (𝜑 → {𝐴} = {𝐵})
62, 5reseq12d 5830 . . . 4 (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵}))
76funeqd 6353 . . 3 (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵})))
84, 7anbi12d 632 . 2 (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))))
9 df-dfat 43466 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 43466 . 2 (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))
118, 9, 103bitr4g 316 1 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4543  dom cdm 5531  cres 5533  Fun wfun 6325   defAt wdfat 43463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-br 5043  df-opab 5105  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-res 5543  df-fun 6333  df-dfat 43466
This theorem is referenced by:  afveq12d  43480  afv2eq12d  43562
  Copyright terms: Public domain W3C validator