![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfateq12d | Structured version Visualization version GIF version |
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
dfateq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
dfateq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
dfateq12d | ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfateq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfateq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | dmeqd 5904 | . . . 4 ⊢ (𝜑 → dom 𝐹 = dom 𝐺) |
4 | 1, 3 | eleq12d 2825 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ↔ 𝐵 ∈ dom 𝐺)) |
5 | 1 | sneqd 4639 | . . . . 5 ⊢ (𝜑 → {𝐴} = {𝐵}) |
6 | 2, 5 | reseq12d 5981 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵})) |
7 | 6 | funeqd 6569 | . . 3 ⊢ (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵}))) |
8 | 4, 7 | anbi12d 629 | . 2 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))) |
9 | df-dfat 46125 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 46125 | . 2 ⊢ (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))) | |
11 | 8, 9, 10 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {csn 4627 dom cdm 5675 ↾ cres 5677 Fun wfun 6536 defAt wdfat 46122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-fun 6544 df-dfat 46125 |
This theorem is referenced by: afveq12d 46139 afv2eq12d 46221 |
Copyright terms: Public domain | W3C validator |