Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnafv Structured version   Visualization version   GIF version

Theorem nfunsnafv 44634
Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6811. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
nfunsnafv (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V)

Proof of Theorem nfunsnafv
StepHypRef Expression
1 df-dfat 44611 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
21simprbi 497 . 2 (𝐹 defAt 𝐴 → Fun (𝐹 ↾ {𝐴}))
3 afvnfundmuv 44631 . 2 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V)
42, 3nsyl5 159 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  dom cdm 5589  cres 5591  Fun wfun 6427   defAt wdfat 44608  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by:  afvvfunressn  44635  nfunsnaov  44678
  Copyright terms: Public domain W3C validator