Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnafv Structured version   Visualization version   GIF version

Theorem nfunsnafv 47136
Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6862. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
nfunsnafv (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V)

Proof of Theorem nfunsnafv
StepHypRef Expression
1 df-dfat 47113 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
21simprbi 496 . 2 (𝐹 defAt 𝐴 → Fun (𝐹 ↾ {𝐴}))
3 afvnfundmuv 47133 . 2 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V)
42, 3nsyl5 159 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  dom cdm 5619  cres 5621  Fun wfun 6476   defAt wdfat 47110  '''cafv 47111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-aiota 47079  df-dfat 47113  df-afv 47114
This theorem is referenced by:  afvvfunressn  47137  nfunsnaov  47180
  Copyright terms: Public domain W3C validator