![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunsnafv | Structured version Visualization version GIF version |
Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6933. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
nfunsnafv | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 46126 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 defAt 𝐴 → Fun (𝐹 ↾ {𝐴})) |
3 | afvnfundmuv 46146 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | |
4 | 2, 3 | nsyl5 159 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 dom cdm 5676 ↾ cres 5678 Fun wfun 6537 defAt wdfat 46123 '''cafv 46124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-aiota 46092 df-dfat 46126 df-afv 46127 |
This theorem is referenced by: afvvfunressn 46150 nfunsnaov 46193 |
Copyright terms: Public domain | W3C validator |