| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunsnafv | Structured version Visualization version GIF version | ||
| Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6861. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| nfunsnafv | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47229 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 defAt 𝐴 → Fun (𝐹 ↾ {𝐴})) |
| 3 | afvnfundmuv 47249 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | |
| 4 | 2, 3 | nsyl5 159 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 defAt wdfat 47226 '''cafv 47227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47195 df-dfat 47229 df-afv 47230 |
| This theorem is referenced by: afvvfunressn 47253 nfunsnaov 47296 |
| Copyright terms: Public domain | W3C validator |