| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunsnafv | Structured version Visualization version GIF version | ||
| Description: If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6902. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| nfunsnafv | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47110 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 defAt 𝐴 → Fun (𝐹 ↾ {𝐴})) |
| 3 | afvnfundmuv 47130 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | |
| 4 | 2, 3 | nsyl5 159 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4591 dom cdm 5640 ↾ cres 5642 Fun wfun 6507 defAt wdfat 47107 '''cafv 47108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-aiota 47076 df-dfat 47110 df-afv 47111 |
| This theorem is referenced by: afvvfunressn 47134 nfunsnaov 47177 |
| Copyright terms: Public domain | W3C validator |