![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrn | Structured version Visualization version GIF version |
Description: A function's value belongs to its range, analogous to fvelrn 6700. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6259 | . . . . . 6 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
2 | 1 | anim1i 614 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)) |
3 | 2 | ancomd 462 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
4 | df-dfat 42788 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
5 | 3, 4 | sylibr 235 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
6 | afvfundmfveq 42807 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
7 | 6 | eqcomd 2799 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹'''𝐴)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = (𝐹'''𝐴)) |
9 | fvelrn 6700 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
10 | 8, 9 | eqeltrrd 2882 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 {csn 4466 dom cdm 5435 ran crn 5436 ↾ cres 5437 Fun wfun 6211 ‘cfv 6217 defAt wdfat 42785 '''cafv 42786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-fal 1533 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-int 4777 df-br 4957 df-opab 5019 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-iota 6181 df-fun 6219 df-fn 6220 df-fv 6225 df-aiota 42755 df-dfat 42788 df-afv 42789 |
This theorem is referenced by: fnafvelrn 42838 |
Copyright terms: Public domain | W3C validator |