Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrn Structured version   Visualization version   GIF version

Theorem afvelrn 45076
Description: A function's value belongs to its range, analogous to fvelrn 7015. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)

Proof of Theorem afvelrn
StepHypRef Expression
1 funres 6531 . . . . . 6 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
21anim1i 616 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹))
32ancomd 463 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
4 df-dfat 45027 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
53, 4sylibr 233 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)
6 afvfundmfveq 45046 . . . 4 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
76eqcomd 2743 . . 3 (𝐹 defAt 𝐴 → (𝐹𝐴) = (𝐹'''𝐴))
85, 7syl 17 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹'''𝐴))
9 fvelrn 7015 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
108, 9eqeltrrd 2839 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  {csn 4578  dom cdm 5625  ran crn 5626  cres 5627  Fun wfun 6478  cfv 6484   defAt wdfat 45024  '''cafv 45025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-br 5098  df-opab 5160  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-iota 6436  df-fun 6486  df-fn 6487  df-fv 6492  df-aiota 44993  df-dfat 45027  df-afv 45028
This theorem is referenced by:  fnafvelrn  45077
  Copyright terms: Public domain W3C validator