| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrn | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its range, analogous to fvelrn 7009. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6523 | . . . . . 6 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)) |
| 3 | 2 | ancomd 461 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| 4 | df-dfat 47218 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
| 6 | afvfundmfveq 47237 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 7 | 6 | eqcomd 2737 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹'''𝐴)) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = (𝐹'''𝐴)) |
| 9 | fvelrn 7009 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 10 | 8, 9 | eqeltrrd 2832 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 dom cdm 5614 ran crn 5615 ↾ cres 5616 Fun wfun 6475 ‘cfv 6481 defAt wdfat 47215 '''cafv 47216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-aiota 47184 df-dfat 47218 df-afv 47219 |
| This theorem is referenced by: fnafvelrn 47268 |
| Copyright terms: Public domain | W3C validator |