Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrn Structured version   Visualization version   GIF version

Theorem afvelrn 47177
Description: A function's value belongs to its range, analogous to fvelrn 7071. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)

Proof of Theorem afvelrn
StepHypRef Expression
1 funres 6583 . . . . . 6 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
21anim1i 615 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹))
32ancomd 461 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
4 df-dfat 47128 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
53, 4sylibr 234 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)
6 afvfundmfveq 47147 . . . 4 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
76eqcomd 2742 . . 3 (𝐹 defAt 𝐴 → (𝐹𝐴) = (𝐹'''𝐴))
85, 7syl 17 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹'''𝐴))
9 fvelrn 7071 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
108, 9eqeltrrd 2836 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606  dom cdm 5659  ran crn 5660  cres 5661  Fun wfun 6530  cfv 6536   defAt wdfat 47125  '''cafv 47126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-aiota 47094  df-dfat 47128  df-afv 47129
This theorem is referenced by:  fnafvelrn  47178
  Copyright terms: Public domain W3C validator