Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrn Structured version   Visualization version   GIF version

Theorem afvelrn 44660
Description: A function's value belongs to its range, analogous to fvelrn 6954. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)

Proof of Theorem afvelrn
StepHypRef Expression
1 funres 6476 . . . . . 6 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
21anim1i 615 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹))
32ancomd 462 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
4 df-dfat 44611 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
53, 4sylibr 233 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)
6 afvfundmfveq 44630 . . . 4 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
76eqcomd 2744 . . 3 (𝐹 defAt 𝐴 → (𝐹𝐴) = (𝐹'''𝐴))
85, 7syl 17 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹'''𝐴))
9 fvelrn 6954 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
108, 9eqeltrrd 2840 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  dom cdm 5589  ran crn 5590  cres 5591  Fun wfun 6427  cfv 6433   defAt wdfat 44608  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by:  fnafvelrn  44661
  Copyright terms: Public domain W3C validator