Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrn Structured version   Visualization version   GIF version

Theorem afvelrn 44092
Description: A function's value belongs to its range, analogous to fvelrn 6835. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)

Proof of Theorem afvelrn
StepHypRef Expression
1 funres 6377 . . . . . 6 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
21anim1i 617 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹))
32ancomd 465 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
4 df-dfat 44043 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
53, 4sylibr 237 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)
6 afvfundmfveq 44062 . . . 4 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
76eqcomd 2764 . . 3 (𝐹 defAt 𝐴 → (𝐹𝐴) = (𝐹'''𝐴))
85, 7syl 17 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹'''𝐴))
9 fvelrn 6835 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
108, 9eqeltrrd 2853 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {csn 4522  dom cdm 5524  ran crn 5525  cres 5526  Fun wfun 6329  cfv 6335   defAt wdfat 44040  '''cafv 44041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-int 4839  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-iota 6294  df-fun 6337  df-fn 6338  df-fv 6343  df-aiota 44008  df-dfat 44043  df-afv 44044
This theorem is referenced by:  fnafvelrn  44093
  Copyright terms: Public domain W3C validator