Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafvb Structured version   Visualization version   GIF version

Theorem fnbrafvb 47166
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6959. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnbrafvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrafvb
StepHypRef Expression
1 fndm 6671 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 eleq2 2830 . . . . . . . 8 (𝐴 = dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
32eqcoms 2745 . . . . . . 7 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
43biimpd 229 . . . . . 6 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
51, 4syl 17 . . . . 5 (𝐹 Fn 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
65imp 406 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐹)
7 snssi 4808 . . . . . . 7 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
87adantl 481 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
9 fnssresb 6690 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
109adantr 480 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
118, 10mpbird 257 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵})
12 fnfun 6668 . . . . 5 ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵}))
1311, 12syl 17 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → Fun (𝐹 ↾ {𝐵}))
14 df-dfat 47131 . . . . 5 (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})))
15 afvfundmfveq 47150 . . . . 5 (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹𝐵))
1614, 15sylbir 235 . . . 4 ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹𝐵))
176, 13, 16syl2anc 584 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹'''𝐵) = (𝐹𝐵))
1817eqeq1d 2739 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
19 fnbrfvb 6959 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
2018, 19bitrd 279 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3951  {csn 4626   class class class wbr 5143  dom cdm 5685  cres 5687  Fun wfun 6555   Fn wfn 6556  cfv 6561   defAt wdfat 47128  '''cafv 47129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-aiota 47097  df-dfat 47131  df-afv 47132
This theorem is referenced by:  fnopafvb  47167  funbrafvb  47168  dfafn5a  47172
  Copyright terms: Public domain W3C validator