Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafvb | Structured version Visualization version GIF version |
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6707. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fnbrafvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6437 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | eleq2 2841 | . . . . . . . 8 ⊢ (𝐴 = dom 𝐹 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) | |
3 | 2 | eqcoms 2767 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) |
4 | 3 | biimpd 232 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
6 | 5 | imp 411 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
7 | snssi 4699 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
8 | 7 | adantl 486 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
9 | fnssresb 6453 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) | |
10 | 9 | adantr 485 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) |
11 | 8, 10 | mpbird 260 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵}) |
12 | fnfun 6435 | . . . . 5 ⊢ ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵})) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun (𝐹 ↾ {𝐵})) |
14 | df-dfat 44044 | . . . . 5 ⊢ (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵}))) | |
15 | afvfundmfveq 44063 | . . . . 5 ⊢ (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹‘𝐵)) | |
16 | 14, 15 | sylbir 238 | . . . 4 ⊢ ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
17 | 6, 13, 16 | syl2anc 588 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
18 | 17 | eqeq1d 2761 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
19 | fnbrfvb 6707 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | |
20 | 18, 19 | bitrd 282 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ⊆ wss 3859 {csn 4523 class class class wbr 5033 dom cdm 5525 ↾ cres 5527 Fun wfun 6330 Fn wfn 6331 ‘cfv 6336 defAt wdfat 44041 '''cafv 44042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-int 4840 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-res 5537 df-iota 6295 df-fun 6338 df-fn 6339 df-fv 6344 df-aiota 44009 df-dfat 44044 df-afv 44045 |
This theorem is referenced by: fnopafvb 44080 funbrafvb 44081 dfafn5a 44085 |
Copyright terms: Public domain | W3C validator |