Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafvb Structured version   Visualization version   GIF version

Theorem fnbrafvb 47278
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6878. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnbrafvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrafvb
StepHypRef Expression
1 fndm 6589 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 eleq2 2822 . . . . . . . 8 (𝐴 = dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
32eqcoms 2741 . . . . . . 7 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
43biimpd 229 . . . . . 6 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
51, 4syl 17 . . . . 5 (𝐹 Fn 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
65imp 406 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐹)
7 snssi 4759 . . . . . . 7 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
87adantl 481 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
9 fnssresb 6608 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
109adantr 480 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
118, 10mpbird 257 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵})
12 fnfun 6586 . . . . 5 ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵}))
1311, 12syl 17 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → Fun (𝐹 ↾ {𝐵}))
14 df-dfat 47243 . . . . 5 (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})))
15 afvfundmfveq 47262 . . . . 5 (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹𝐵))
1614, 15sylbir 235 . . . 4 ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹𝐵))
176, 13, 16syl2anc 584 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹'''𝐵) = (𝐹𝐵))
1817eqeq1d 2735 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
19 fnbrfvb 6878 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
2018, 19bitrd 279 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  {csn 4575   class class class wbr 5093  dom cdm 5619  cres 5621  Fun wfun 6480   Fn wfn 6481  cfv 6486   defAt wdfat 47240  '''cafv 47241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-aiota 47209  df-dfat 47243  df-afv 47244
This theorem is referenced by:  fnopafvb  47279  funbrafvb  47280  dfafn5a  47284
  Copyright terms: Public domain W3C validator