| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafvb | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6877. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| fnbrafvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6589 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 2 | eleq2 2817 | . . . . . . . 8 ⊢ (𝐴 = dom 𝐹 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) | |
| 3 | 2 | eqcoms 2737 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) |
| 4 | 3 | biimpd 229 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
| 6 | 5 | imp 406 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
| 7 | snssi 4762 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
| 9 | fnssresb 6608 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) |
| 11 | 8, 10 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵}) |
| 12 | fnfun 6586 | . . . . 5 ⊢ ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵})) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun (𝐹 ↾ {𝐵})) |
| 14 | df-dfat 47104 | . . . . 5 ⊢ (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵}))) | |
| 15 | afvfundmfveq 47123 | . . . . 5 ⊢ (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹‘𝐵)) | |
| 16 | 14, 15 | sylbir 235 | . . . 4 ⊢ ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
| 17 | 6, 13, 16 | syl2anc 584 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
| 18 | 17 | eqeq1d 2731 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| 19 | fnbrfvb 6877 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | |
| 20 | 18, 19 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 class class class wbr 5095 dom cdm 5623 ↾ cres 5625 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 defAt wdfat 47101 '''cafv 47102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-aiota 47070 df-dfat 47104 df-afv 47105 |
| This theorem is referenced by: fnopafvb 47140 funbrafvb 47141 dfafn5a 47145 |
| Copyright terms: Public domain | W3C validator |