![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafvb | Structured version Visualization version GIF version |
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6955. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fnbrafvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6662 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | eleq2 2818 | . . . . . . . 8 ⊢ (𝐴 = dom 𝐹 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) | |
3 | 2 | eqcoms 2736 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) |
4 | 3 | biimpd 228 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
6 | 5 | imp 405 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
7 | snssi 4816 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
8 | 7 | adantl 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
9 | fnssresb 6682 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) | |
10 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) |
11 | 8, 10 | mpbird 256 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵}) |
12 | fnfun 6659 | . . . . 5 ⊢ ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵})) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun (𝐹 ↾ {𝐵})) |
14 | df-dfat 46546 | . . . . 5 ⊢ (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵}))) | |
15 | afvfundmfveq 46565 | . . . . 5 ⊢ (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹‘𝐵)) | |
16 | 14, 15 | sylbir 234 | . . . 4 ⊢ ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
17 | 6, 13, 16 | syl2anc 582 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
18 | 17 | eqeq1d 2730 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
19 | fnbrfvb 6955 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | |
20 | 18, 19 | bitrd 278 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 {csn 4632 class class class wbr 5152 dom cdm 5682 ↾ cres 5684 Fun wfun 6547 Fn wfn 6548 ‘cfv 6553 defAt wdfat 46543 '''cafv 46544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 df-aiota 46512 df-dfat 46546 df-afv 46547 |
This theorem is referenced by: fnopafvb 46582 funbrafvb 46583 dfafn5a 46587 |
Copyright terms: Public domain | W3C validator |