Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafvb Structured version   Visualization version   GIF version

Theorem fnbrafvb 44533
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6804. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnbrafvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrafvb
StepHypRef Expression
1 fndm 6520 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 eleq2 2827 . . . . . . . 8 (𝐴 = dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
32eqcoms 2746 . . . . . . 7 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
43biimpd 228 . . . . . 6 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
51, 4syl 17 . . . . 5 (𝐹 Fn 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
65imp 406 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐹)
7 snssi 4738 . . . . . . 7 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
87adantl 481 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
9 fnssresb 6538 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
109adantr 480 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
118, 10mpbird 256 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵})
12 fnfun 6517 . . . . 5 ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵}))
1311, 12syl 17 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → Fun (𝐹 ↾ {𝐵}))
14 df-dfat 44498 . . . . 5 (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})))
15 afvfundmfveq 44517 . . . . 5 (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹𝐵))
1614, 15sylbir 234 . . . 4 ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹𝐵))
176, 13, 16syl2anc 583 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹'''𝐵) = (𝐹𝐵))
1817eqeq1d 2740 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
19 fnbrfvb 6804 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
2018, 19bitrd 278 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883  {csn 4558   class class class wbr 5070  dom cdm 5580  cres 5582  Fun wfun 6412   Fn wfn 6413  cfv 6418   defAt wdfat 44495  '''cafv 44496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499
This theorem is referenced by:  fnopafvb  44534  funbrafvb  44535  dfafn5a  44539
  Copyright terms: Public domain W3C validator