![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafvb | Structured version Visualization version GIF version |
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6973. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fnbrafvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6682 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | eleq2 2833 | . . . . . . . 8 ⊢ (𝐴 = dom 𝐹 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) | |
3 | 2 | eqcoms 2748 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) |
4 | 3 | biimpd 229 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
6 | 5 | imp 406 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
7 | snssi 4833 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
9 | fnssresb 6702 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) |
11 | 8, 10 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵}) |
12 | fnfun 6679 | . . . . 5 ⊢ ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵})) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun (𝐹 ↾ {𝐵})) |
14 | df-dfat 47034 | . . . . 5 ⊢ (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵}))) | |
15 | afvfundmfveq 47053 | . . . . 5 ⊢ (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹‘𝐵)) | |
16 | 14, 15 | sylbir 235 | . . . 4 ⊢ ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
17 | 6, 13, 16 | syl2anc 583 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
18 | 17 | eqeq1d 2742 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
19 | fnbrfvb 6973 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | |
20 | 18, 19 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 defAt wdfat 47031 '''cafv 47032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 |
This theorem is referenced by: fnopafvb 47070 funbrafvb 47071 dfafn5a 47075 |
Copyright terms: Public domain | W3C validator |