MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg2 Structured version   Visualization version   GIF version

Theorem isnsg2 19074
Description: Weaken the condition of isnsg 19073 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3 𝑋 = (Base‘𝐺)
2 isnsg.2 . . 3 + = (+g𝐺)
31, 2isnsg 19073 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)))
4 dfbi2 473 . . . . . . 7 (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
54ralbii 3091 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
65ralbii 3091 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
7 r19.26-2 3136 . . . . 5 (∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
86, 7bitri 274 . . . 4 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
9 oveq2 7421 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 + 𝑧) = (𝑥 + 𝑦))
109eleq1d 2816 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
11 oveq1 7420 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑥) = (𝑦 + 𝑥))
1211eleq1d 2816 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
1310, 12imbi12d 343 . . . . . . 7 (𝑧 = 𝑦 → (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
1413cbvralvw 3232 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
1514ralbii 3091 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
16 ralcom 3284 . . . . . 6 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆))
17 oveq2 7421 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 + 𝑥) = (𝑧 + 𝑦))
1817eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆))
19 oveq1 7420 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝑧) = (𝑦 + 𝑧))
2019eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑧) ∈ 𝑆))
2118, 20imbi12d 343 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆)))
2221cbvralvw 3232 . . . . . . 7 (∀𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
2322ralbii 3091 . . . . . 6 (∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
24 oveq1 7420 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
2524eleq1d 2816 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
26 oveq2 7421 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 + 𝑧) = (𝑦 + 𝑥))
2726eleq1d 2816 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
2825, 27imbi12d 343 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
2928ralbidv 3175 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
3029cbvralvw 3232 . . . . . 6 (∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3116, 23, 303bitri 296 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3215, 31anbi12i 625 . . . 4 ((∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
33 anidm 563 . . . 4 ((∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
348, 32, 333bitri 296 . . 3 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3534anbi2i 621 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
363, 35bitri 274 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  cfv 6544  (class class class)co 7413  Basecbs 17150  +gcplusg 17203  SubGrpcsubg 19038  NrmSGrpcnsg 19039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-subg 19041  df-nsg 19042
This theorem is referenced by:  isnsg3  19078  subrngringnsg  20443  tgpconncomp  23839  opprnsg  32870
  Copyright terms: Public domain W3C validator