MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg2 Structured version   Visualization version   GIF version

Theorem isnsg2 19072
Description: Weaken the condition of isnsg 19071 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3 𝑋 = (Base‘𝐺)
2 isnsg.2 . . 3 + = (+g𝐺)
31, 2isnsg 19071 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)))
4 dfbi2 474 . . . . . . 7 (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
54ralbii 3079 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
65ralbii 3079 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
7 r19.26-2 3118 . . . . 5 (∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
86, 7bitri 275 . . . 4 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
9 oveq2 7362 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 + 𝑧) = (𝑥 + 𝑦))
109eleq1d 2818 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
11 oveq1 7361 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑥) = (𝑦 + 𝑥))
1211eleq1d 2818 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
1310, 12imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
1413cbvralvw 3211 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
1514ralbii 3079 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
16 ralcom 3261 . . . . . 6 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆))
17 oveq2 7362 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 + 𝑥) = (𝑧 + 𝑦))
1817eleq1d 2818 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆))
19 oveq1 7361 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝑧) = (𝑦 + 𝑧))
2019eleq1d 2818 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑧) ∈ 𝑆))
2118, 20imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆)))
2221cbvralvw 3211 . . . . . . 7 (∀𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
2322ralbii 3079 . . . . . 6 (∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
24 oveq1 7361 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
2524eleq1d 2818 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
26 oveq2 7362 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 + 𝑧) = (𝑦 + 𝑥))
2726eleq1d 2818 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
2825, 27imbi12d 344 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
2928ralbidv 3156 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
3029cbvralvw 3211 . . . . . 6 (∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3116, 23, 303bitri 297 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3215, 31anbi12i 628 . . . 4 ((∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
33 anidm 564 . . . 4 ((∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
348, 32, 333bitri 297 . . 3 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3534anbi2i 623 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
363, 35bitri 275 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  SubGrpcsubg 19037  NrmSGrpcnsg 19038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-subg 19040  df-nsg 19041
This theorem is referenced by:  isnsg3  19076  subrngringnsg  20472  tgpconncomp  24031  opprnsg  33458
  Copyright terms: Public domain W3C validator