| Step | Hyp | Ref
| Expression |
| 1 | | ofun.a |
. . . 4
⊢ (𝜑 → 𝐴 Fn 𝑀) |
| 2 | | ofun.c |
. . . 4
⊢ (𝜑 → 𝐶 Fn 𝑁) |
| 3 | | ofun.1 |
. . . 4
⊢ (𝜑 → (𝑀 ∩ 𝑁) = ∅) |
| 4 | 1, 2, 3 | fnund 6658 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐶) Fn (𝑀 ∪ 𝑁)) |
| 5 | | ofun.b |
. . . 4
⊢ (𝜑 → 𝐵 Fn 𝑀) |
| 6 | | ofun.d |
. . . 4
⊢ (𝜑 → 𝐷 Fn 𝑁) |
| 7 | 5, 6, 3 | fnund 6658 |
. . 3
⊢ (𝜑 → (𝐵 ∪ 𝐷) Fn (𝑀 ∪ 𝑁)) |
| 8 | | ofun.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| 9 | | ofun.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑊) |
| 10 | 8, 9 | unexd 7753 |
. . 3
⊢ (𝜑 → (𝑀 ∪ 𝑁) ∈ V) |
| 11 | | inidm 4207 |
. . 3
⊢ ((𝑀 ∪ 𝑁) ∩ (𝑀 ∪ 𝑁)) = (𝑀 ∪ 𝑁) |
| 12 | 4, 7, 10, 10, 11 | offn 7689 |
. 2
⊢ (𝜑 → ((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷)) Fn (𝑀 ∪ 𝑁)) |
| 13 | | inidm 4207 |
. . . 4
⊢ (𝑀 ∩ 𝑀) = 𝑀 |
| 14 | 1, 5, 8, 8, 13 | offn 7689 |
. . 3
⊢ (𝜑 → (𝐴 ∘f 𝑅𝐵) Fn 𝑀) |
| 15 | | inidm 4207 |
. . . 4
⊢ (𝑁 ∩ 𝑁) = 𝑁 |
| 16 | 2, 6, 9, 9, 15 | offn 7689 |
. . 3
⊢ (𝜑 → (𝐶 ∘f 𝑅𝐷) Fn 𝑁) |
| 17 | 14, 16, 3 | fnund 6658 |
. 2
⊢ (𝜑 → ((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷)) Fn (𝑀 ∪ 𝑁)) |
| 18 | | eqidd 2737 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → ((𝐴 ∪ 𝐶)‘𝑥) = ((𝐴 ∪ 𝐶)‘𝑥)) |
| 19 | | eqidd 2737 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → ((𝐵 ∪ 𝐷)‘𝑥) = ((𝐵 ∪ 𝐷)‘𝑥)) |
| 20 | 4, 7, 10, 10, 11, 18, 19 | ofval 7687 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → (((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷))‘𝑥) = (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥))) |
| 21 | | elun 4133 |
. . . 4
⊢ (𝑥 ∈ (𝑀 ∪ 𝑁) ↔ (𝑥 ∈ 𝑀 ∨ 𝑥 ∈ 𝑁)) |
| 22 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴‘𝑥) = (𝐴‘𝑥)) |
| 23 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐵‘𝑥) = (𝐵‘𝑥)) |
| 24 | 1, 5, 8, 8, 13, 22, 23 | ofval 7687 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝐴 ∘f 𝑅𝐵)‘𝑥) = ((𝐴‘𝑥)𝑅(𝐵‘𝑥))) |
| 25 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 ∘f 𝑅𝐵) Fn 𝑀) |
| 26 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐶 ∘f 𝑅𝐷) Fn 𝑁) |
| 27 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑀 ∩ 𝑁) = ∅) |
| 28 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑥 ∈ 𝑀) |
| 29 | 25, 26, 27, 28 | fvun1d 6977 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥) = ((𝐴 ∘f 𝑅𝐵)‘𝑥)) |
| 30 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 Fn 𝑀) |
| 31 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 Fn 𝑁) |
| 32 | 30, 31, 27, 28 | fvun1d 6977 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝐴 ∪ 𝐶)‘𝑥) = (𝐴‘𝑥)) |
| 33 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐵 Fn 𝑀) |
| 34 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐷 Fn 𝑁) |
| 35 | 33, 34, 27, 28 | fvun1d 6977 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝐵 ∪ 𝐷)‘𝑥) = (𝐵‘𝑥)) |
| 36 | 32, 35 | oveq12d 7428 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = ((𝐴‘𝑥)𝑅(𝐵‘𝑥))) |
| 37 | 24, 29, 36 | 3eqtr4rd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) |
| 38 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐶‘𝑥) = (𝐶‘𝑥)) |
| 39 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐷‘𝑥) = (𝐷‘𝑥)) |
| 40 | 2, 6, 9, 9, 15, 38, 39 | ofval 7687 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → ((𝐶 ∘f 𝑅𝐷)‘𝑥) = ((𝐶‘𝑥)𝑅(𝐷‘𝑥))) |
| 41 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐴 ∘f 𝑅𝐵) Fn 𝑀) |
| 42 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐶 ∘f 𝑅𝐷) Fn 𝑁) |
| 43 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝑀 ∩ 𝑁) = ∅) |
| 44 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
| 45 | 41, 42, 43, 44 | fvun2d 6978 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥) = ((𝐶 ∘f 𝑅𝐷)‘𝑥)) |
| 46 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐴 Fn 𝑀) |
| 47 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐶 Fn 𝑁) |
| 48 | 46, 47, 43, 44 | fvun2d 6978 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → ((𝐴 ∪ 𝐶)‘𝑥) = (𝐶‘𝑥)) |
| 49 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐵 Fn 𝑀) |
| 50 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐷 Fn 𝑁) |
| 51 | 49, 50, 43, 44 | fvun2d 6978 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → ((𝐵 ∪ 𝐷)‘𝑥) = (𝐷‘𝑥)) |
| 52 | 48, 51 | oveq12d 7428 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = ((𝐶‘𝑥)𝑅(𝐷‘𝑥))) |
| 53 | 40, 45, 52 | 3eqtr4rd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) |
| 54 | 37, 53 | jaodan 959 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑀 ∨ 𝑥 ∈ 𝑁)) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) |
| 55 | 21, 54 | sylan2b 594 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) |
| 56 | 20, 55 | eqtrd 2771 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → (((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷))‘𝑥) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) |
| 57 | 12, 17, 56 | eqfnfvd 7029 |
1
⊢ (𝜑 → ((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷)) = ((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))) |