| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ofun.a | . . . 4
⊢ (𝜑 → 𝐴 Fn 𝑀) | 
| 2 |  | ofun.c | . . . 4
⊢ (𝜑 → 𝐶 Fn 𝑁) | 
| 3 |  | ofun.1 | . . . 4
⊢ (𝜑 → (𝑀 ∩ 𝑁) = ∅) | 
| 4 | 1, 2, 3 | fnund 6682 | . . 3
⊢ (𝜑 → (𝐴 ∪ 𝐶) Fn (𝑀 ∪ 𝑁)) | 
| 5 |  | ofun.b | . . . 4
⊢ (𝜑 → 𝐵 Fn 𝑀) | 
| 6 |  | ofun.d | . . . 4
⊢ (𝜑 → 𝐷 Fn 𝑁) | 
| 7 | 5, 6, 3 | fnund 6682 | . . 3
⊢ (𝜑 → (𝐵 ∪ 𝐷) Fn (𝑀 ∪ 𝑁)) | 
| 8 |  | ofun.m | . . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑉) | 
| 9 |  | ofun.n | . . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑊) | 
| 10 | 8, 9 | unexd 7775 | . . 3
⊢ (𝜑 → (𝑀 ∪ 𝑁) ∈ V) | 
| 11 |  | inidm 4226 | . . 3
⊢ ((𝑀 ∪ 𝑁) ∩ (𝑀 ∪ 𝑁)) = (𝑀 ∪ 𝑁) | 
| 12 | 4, 7, 10, 10, 11 | offn 7711 | . 2
⊢ (𝜑 → ((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷)) Fn (𝑀 ∪ 𝑁)) | 
| 13 |  | inidm 4226 | . . . 4
⊢ (𝑀 ∩ 𝑀) = 𝑀 | 
| 14 | 1, 5, 8, 8, 13 | offn 7711 | . . 3
⊢ (𝜑 → (𝐴 ∘f 𝑅𝐵) Fn 𝑀) | 
| 15 |  | inidm 4226 | . . . 4
⊢ (𝑁 ∩ 𝑁) = 𝑁 | 
| 16 | 2, 6, 9, 9, 15 | offn 7711 | . . 3
⊢ (𝜑 → (𝐶 ∘f 𝑅𝐷) Fn 𝑁) | 
| 17 | 14, 16, 3 | fnund 6682 | . 2
⊢ (𝜑 → ((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷)) Fn (𝑀 ∪ 𝑁)) | 
| 18 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → ((𝐴 ∪ 𝐶)‘𝑥) = ((𝐴 ∪ 𝐶)‘𝑥)) | 
| 19 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → ((𝐵 ∪ 𝐷)‘𝑥) = ((𝐵 ∪ 𝐷)‘𝑥)) | 
| 20 | 4, 7, 10, 10, 11, 18, 19 | ofval 7709 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → (((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷))‘𝑥) = (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥))) | 
| 21 |  | elun 4152 | . . . 4
⊢ (𝑥 ∈ (𝑀 ∪ 𝑁) ↔ (𝑥 ∈ 𝑀 ∨ 𝑥 ∈ 𝑁)) | 
| 22 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴‘𝑥) = (𝐴‘𝑥)) | 
| 23 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐵‘𝑥) = (𝐵‘𝑥)) | 
| 24 | 1, 5, 8, 8, 13, 22, 23 | ofval 7709 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝐴 ∘f 𝑅𝐵)‘𝑥) = ((𝐴‘𝑥)𝑅(𝐵‘𝑥))) | 
| 25 | 14 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 ∘f 𝑅𝐵) Fn 𝑀) | 
| 26 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐶 ∘f 𝑅𝐷) Fn 𝑁) | 
| 27 | 3 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑀 ∩ 𝑁) = ∅) | 
| 28 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑥 ∈ 𝑀) | 
| 29 | 25, 26, 27, 28 | fvun1d 7001 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥) = ((𝐴 ∘f 𝑅𝐵)‘𝑥)) | 
| 30 | 1 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 Fn 𝑀) | 
| 31 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 Fn 𝑁) | 
| 32 | 30, 31, 27, 28 | fvun1d 7001 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝐴 ∪ 𝐶)‘𝑥) = (𝐴‘𝑥)) | 
| 33 | 5 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐵 Fn 𝑀) | 
| 34 | 6 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐷 Fn 𝑁) | 
| 35 | 33, 34, 27, 28 | fvun1d 7001 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝐵 ∪ 𝐷)‘𝑥) = (𝐵‘𝑥)) | 
| 36 | 32, 35 | oveq12d 7450 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = ((𝐴‘𝑥)𝑅(𝐵‘𝑥))) | 
| 37 | 24, 29, 36 | 3eqtr4rd 2787 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) | 
| 38 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐶‘𝑥) = (𝐶‘𝑥)) | 
| 39 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐷‘𝑥) = (𝐷‘𝑥)) | 
| 40 | 2, 6, 9, 9, 15, 38, 39 | ofval 7709 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → ((𝐶 ∘f 𝑅𝐷)‘𝑥) = ((𝐶‘𝑥)𝑅(𝐷‘𝑥))) | 
| 41 | 14 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐴 ∘f 𝑅𝐵) Fn 𝑀) | 
| 42 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝐶 ∘f 𝑅𝐷) Fn 𝑁) | 
| 43 | 3 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (𝑀 ∩ 𝑁) = ∅) | 
| 44 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑥 ∈ 𝑁) | 
| 45 | 41, 42, 43, 44 | fvun2d 7002 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥) = ((𝐶 ∘f 𝑅𝐷)‘𝑥)) | 
| 46 | 1 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐴 Fn 𝑀) | 
| 47 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐶 Fn 𝑁) | 
| 48 | 46, 47, 43, 44 | fvun2d 7002 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → ((𝐴 ∪ 𝐶)‘𝑥) = (𝐶‘𝑥)) | 
| 49 | 5 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐵 Fn 𝑀) | 
| 50 | 6 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐷 Fn 𝑁) | 
| 51 | 49, 50, 43, 44 | fvun2d 7002 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → ((𝐵 ∪ 𝐷)‘𝑥) = (𝐷‘𝑥)) | 
| 52 | 48, 51 | oveq12d 7450 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = ((𝐶‘𝑥)𝑅(𝐷‘𝑥))) | 
| 53 | 40, 45, 52 | 3eqtr4rd 2787 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) | 
| 54 | 37, 53 | jaodan 959 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑀 ∨ 𝑥 ∈ 𝑁)) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) | 
| 55 | 21, 54 | sylan2b 594 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → (((𝐴 ∪ 𝐶)‘𝑥)𝑅((𝐵 ∪ 𝐷)‘𝑥)) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) | 
| 56 | 20, 55 | eqtrd 2776 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀 ∪ 𝑁)) → (((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷))‘𝑥) = (((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))‘𝑥)) | 
| 57 | 12, 17, 56 | eqfnfvd 7053 | 1
⊢ (𝜑 → ((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷)) = ((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))) |