| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tron | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| Ref | Expression |
|---|---|
| tron | ⊢ Tr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5207 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
| 2 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elon 6323 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordelord 6336 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
| 5 | 3, 4 | sylanb 581 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
| 7 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 7 | elon 6323 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
| 9 | 6, 8 | imbitrrdi 252 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
| 10 | 9 | ssrdv 3937 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
| 11 | 1, 10 | mprgbir 3056 | 1 ⊢ Tr On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3899 Tr wtr 5202 Ord word 6313 Oncon0 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 |
| This theorem is referenced by: ordon 7719 predon 7728 onuninsuci 7779 gruina 10719 |
| Copyright terms: Public domain | W3C validator |