Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tron | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
Ref | Expression |
---|---|
tron | ⊢ Tr On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5195 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
2 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 2 | elon 6275 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordelord 6288 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
5 | 3, 4 | sylanb 581 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
6 | 5 | ex 413 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
7 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 7 | elon 6275 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
9 | 6, 8 | syl6ibr 251 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
10 | 9 | ssrdv 3927 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
11 | 1, 10 | mprgbir 3079 | 1 ⊢ Tr On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 Tr wtr 5191 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: ordon 7627 predon 7635 onuninsuci 7687 gruina 10574 |
Copyright terms: Public domain | W3C validator |