MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tron Structured version   Visualization version   GIF version

Theorem tron 6355
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron Tr On

Proof of Theorem tron
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5220 . 2 (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On)
2 vex 3451 . . . . . . 7 𝑥 ∈ V
32elon 6341 . . . . . 6 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordelord 6354 . . . . . 6 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
53, 4sylanb 581 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
65ex 412 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → Ord 𝑦))
7 vex 3451 . . . . 5 𝑦 ∈ V
87elon 6341 . . . 4 (𝑦 ∈ On ↔ Ord 𝑦)
96, 8imbitrrdi 252 . . 3 (𝑥 ∈ On → (𝑦𝑥𝑦 ∈ On))
109ssrdv 3952 . 2 (𝑥 ∈ On → 𝑥 ⊆ On)
111, 10mprgbir 3051 1 Tr On
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3914  Tr wtr 5214  Ord word 6331  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  ordon  7753  predon  7762  onuninsuci  7816  gruina  10771
  Copyright terms: Public domain W3C validator