MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tron Structured version   Visualization version   GIF version

Theorem tron 6337
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron Tr On

Proof of Theorem tron
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5207 . 2 (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On)
2 vex 3442 . . . . . . 7 𝑥 ∈ V
32elon 6323 . . . . . 6 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordelord 6336 . . . . . 6 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
53, 4sylanb 581 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
65ex 412 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → Ord 𝑦))
7 vex 3442 . . . . 5 𝑦 ∈ V
87elon 6323 . . . 4 (𝑦 ∈ On ↔ Ord 𝑦)
96, 8imbitrrdi 252 . . 3 (𝑥 ∈ On → (𝑦𝑥𝑦 ∈ On))
109ssrdv 3937 . 2 (𝑥 ∈ On → 𝑥 ⊆ On)
111, 10mprgbir 3056 1 Tr On
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wss 3899  Tr wtr 5202  Ord word 6313  Oncon0 6314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318
This theorem is referenced by:  ordon  7719  predon  7728  onuninsuci  7779  gruina  10719
  Copyright terms: Public domain W3C validator