MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tron Structured version   Visualization version   GIF version

Theorem tron 6274
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron Tr On

Proof of Theorem tron
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5191 . 2 (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On)
2 vex 3426 . . . . . . 7 𝑥 ∈ V
32elon 6260 . . . . . 6 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordelord 6273 . . . . . 6 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
53, 4sylanb 580 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
65ex 412 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → Ord 𝑦))
7 vex 3426 . . . . 5 𝑦 ∈ V
87elon 6260 . . . 4 (𝑦 ∈ On ↔ Ord 𝑦)
96, 8syl6ibr 251 . . 3 (𝑥 ∈ On → (𝑦𝑥𝑦 ∈ On))
109ssrdv 3923 . 2 (𝑥 ∈ On → 𝑥 ⊆ On)
111, 10mprgbir 3078 1 Tr On
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3883  Tr wtr 5187  Ord word 6250  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  ordon  7604  predon  7612  onuninsuci  7662  gruina  10505
  Copyright terms: Public domain W3C validator