![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tron | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
Ref | Expression |
---|---|
tron | ⊢ Tr On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5289 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
2 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 2 | elon 6404 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordelord 6417 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
5 | 3, 4 | sylanb 580 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
6 | 5 | ex 412 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
7 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 7 | elon 6404 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
9 | 6, 8 | imbitrrdi 252 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
10 | 9 | ssrdv 4014 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
11 | 1, 10 | mprgbir 3074 | 1 ⊢ Tr On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 Tr wtr 5283 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: ordon 7812 predon 7821 onuninsuci 7877 gruina 10887 |
Copyright terms: Public domain | W3C validator |