MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Visualization version   GIF version

Theorem itunitc 10380
Description: The union of all union iterates creates the transitive closure; compare trcl 9687. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc (TC‘𝐴) = ran (𝑈𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6860 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
2 fveq2 6860 . . . . . 6 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
32rneqd 5904 . . . . 5 (𝑎 = 𝐴 → ran (𝑈𝑎) = ran (𝑈𝐴))
43unieqd 4886 . . . 4 (𝑎 = 𝐴 ran (𝑈𝑎) = ran (𝑈𝐴))
51, 4eqeq12d 2746 . . 3 (𝑎 = 𝐴 → ((TC‘𝑎) = ran (𝑈𝑎) ↔ (TC‘𝐴) = ran (𝑈𝐴)))
6 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76ituni0 10377 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
87elv 3455 . . . . . 6 ((𝑈𝑎)‘∅) = 𝑎
9 fvssunirn 6893 . . . . . 6 ((𝑈𝑎)‘∅) ⊆ ran (𝑈𝑎)
108, 9eqsstrri 3996 . . . . 5 𝑎 ran (𝑈𝑎)
11 dftr3 5222 . . . . . 6 (Tr ran (𝑈𝑎) ↔ ∀𝑏 ran (𝑈𝑎)𝑏 ran (𝑈𝑎))
12 vex 3454 . . . . . . . 8 𝑎 ∈ V
136itunifn 10376 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
14 fnunirn 7230 . . . . . . . 8 ((𝑈𝑎) Fn ω → (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐)))
1512, 13, 14mp2b 10 . . . . . . 7 (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐))
16 elssuni 4903 . . . . . . . . 9 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ((𝑈𝑎)‘𝑐))
176itunisuc 10378 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
18 fvssunirn 6893 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) ⊆ ran (𝑈𝑎)
1917, 18eqsstrri 3996 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ ran (𝑈𝑎)
2016, 19sstrdi 3961 . . . . . . . 8 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2120rexlimivw 3131 . . . . . . 7 (∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2215, 21sylbi 217 . . . . . 6 (𝑏 ran (𝑈𝑎) → 𝑏 ran (𝑈𝑎))
2311, 22mprgbir 3052 . . . . 5 Tr ran (𝑈𝑎)
24 tcmin 9700 . . . . . 6 (𝑎 ∈ V → ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎)))
2524elv 3455 . . . . 5 ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎))
2610, 23, 25mp2an 692 . . . 4 (TC‘𝑎) ⊆ ran (𝑈𝑎)
27 unissb 4905 . . . . 5 ( ran (𝑈𝑎) ⊆ (TC‘𝑎) ↔ ∀𝑏 ∈ ran (𝑈𝑎)𝑏 ⊆ (TC‘𝑎))
28 fvelrnb 6923 . . . . . . 7 ((𝑈𝑎) Fn ω → (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏))
2912, 13, 28mp2b 10 . . . . . 6 (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏)
306itunitc1 10379 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)
3130a1i 11 . . . . . . . 8 (𝑐 ∈ ω → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
32 sseq1 3974 . . . . . . . 8 (((𝑈𝑎)‘𝑐) = 𝑏 → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) ↔ 𝑏 ⊆ (TC‘𝑎)))
3331, 32syl5ibcom 245 . . . . . . 7 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎)))
3433rexlimiv 3128 . . . . . 6 (∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎))
3529, 34sylbi 217 . . . . 5 (𝑏 ∈ ran (𝑈𝑎) → 𝑏 ⊆ (TC‘𝑎))
3627, 35mprgbir 3052 . . . 4 ran (𝑈𝑎) ⊆ (TC‘𝑎)
3726, 36eqssi 3965 . . 3 (TC‘𝑎) = ran (𝑈𝑎)
385, 37vtoclg 3523 . 2 (𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
39 rn0 5891 . . . . 5 ran ∅ = ∅
4039unieqi 4885 . . . 4 ran ∅ =
41 uni0 4901 . . . 4 ∅ = ∅
4240, 41eqtr2i 2754 . . 3 ∅ = ran ∅
43 fvprc 6852 . . 3 𝐴 ∈ V → (TC‘𝐴) = ∅)
44 fvprc 6852 . . . . 5 𝐴 ∈ V → (𝑈𝐴) = ∅)
4544rneqd 5904 . . . 4 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4645unieqd 4886 . . 3 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4742, 43, 463eqtr4a 2791 . 2 𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
4838, 47pm2.61i 182 1 (TC‘𝐴) = ran (𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  wss 3916  c0 4298   cuni 4873  cmpt 5190  Tr wtr 5216  ran crn 5641  cres 5642  suc csuc 6336   Fn wfn 6508  cfv 6513  ωcom 7844  reccrdg 8379  TCctc 9695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713  ax-inf2 9600
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-tc 9696
This theorem is referenced by:  hsmexlem5  10389
  Copyright terms: Public domain W3C validator