MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Visualization version   GIF version

Theorem itunitc 10490
Description: The union of all union iterates creates the transitive closure; compare trcl 9797. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc (TC‘𝐴) = ran (𝑈𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
2 fveq2 6920 . . . . . 6 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
32rneqd 5963 . . . . 5 (𝑎 = 𝐴 → ran (𝑈𝑎) = ran (𝑈𝐴))
43unieqd 4944 . . . 4 (𝑎 = 𝐴 ran (𝑈𝑎) = ran (𝑈𝐴))
51, 4eqeq12d 2756 . . 3 (𝑎 = 𝐴 → ((TC‘𝑎) = ran (𝑈𝑎) ↔ (TC‘𝐴) = ran (𝑈𝐴)))
6 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76ituni0 10487 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
87elv 3493 . . . . . 6 ((𝑈𝑎)‘∅) = 𝑎
9 fvssunirn 6953 . . . . . 6 ((𝑈𝑎)‘∅) ⊆ ran (𝑈𝑎)
108, 9eqsstrri 4044 . . . . 5 𝑎 ran (𝑈𝑎)
11 dftr3 5289 . . . . . 6 (Tr ran (𝑈𝑎) ↔ ∀𝑏 ran (𝑈𝑎)𝑏 ran (𝑈𝑎))
12 vex 3492 . . . . . . . 8 𝑎 ∈ V
136itunifn 10486 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
14 fnunirn 7291 . . . . . . . 8 ((𝑈𝑎) Fn ω → (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐)))
1512, 13, 14mp2b 10 . . . . . . 7 (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐))
16 elssuni 4961 . . . . . . . . 9 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ((𝑈𝑎)‘𝑐))
176itunisuc 10488 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
18 fvssunirn 6953 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) ⊆ ran (𝑈𝑎)
1917, 18eqsstrri 4044 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ ran (𝑈𝑎)
2016, 19sstrdi 4021 . . . . . . . 8 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2120rexlimivw 3157 . . . . . . 7 (∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2215, 21sylbi 217 . . . . . 6 (𝑏 ran (𝑈𝑎) → 𝑏 ran (𝑈𝑎))
2311, 22mprgbir 3074 . . . . 5 Tr ran (𝑈𝑎)
24 tcmin 9810 . . . . . 6 (𝑎 ∈ V → ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎)))
2524elv 3493 . . . . 5 ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎))
2610, 23, 25mp2an 691 . . . 4 (TC‘𝑎) ⊆ ran (𝑈𝑎)
27 unissb 4963 . . . . 5 ( ran (𝑈𝑎) ⊆ (TC‘𝑎) ↔ ∀𝑏 ∈ ran (𝑈𝑎)𝑏 ⊆ (TC‘𝑎))
28 fvelrnb 6982 . . . . . . 7 ((𝑈𝑎) Fn ω → (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏))
2912, 13, 28mp2b 10 . . . . . 6 (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏)
306itunitc1 10489 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)
3130a1i 11 . . . . . . . 8 (𝑐 ∈ ω → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
32 sseq1 4034 . . . . . . . 8 (((𝑈𝑎)‘𝑐) = 𝑏 → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) ↔ 𝑏 ⊆ (TC‘𝑎)))
3331, 32syl5ibcom 245 . . . . . . 7 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎)))
3433rexlimiv 3154 . . . . . 6 (∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎))
3529, 34sylbi 217 . . . . 5 (𝑏 ∈ ran (𝑈𝑎) → 𝑏 ⊆ (TC‘𝑎))
3627, 35mprgbir 3074 . . . 4 ran (𝑈𝑎) ⊆ (TC‘𝑎)
3726, 36eqssi 4025 . . 3 (TC‘𝑎) = ran (𝑈𝑎)
385, 37vtoclg 3566 . 2 (𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
39 rn0 5950 . . . . 5 ran ∅ = ∅
4039unieqi 4943 . . . 4 ran ∅ =
41 uni0 4959 . . . 4 ∅ = ∅
4240, 41eqtr2i 2769 . . 3 ∅ = ran ∅
43 fvprc 6912 . . 3 𝐴 ∈ V → (TC‘𝐴) = ∅)
44 fvprc 6912 . . . . 5 𝐴 ∈ V → (𝑈𝐴) = ∅)
4544rneqd 5963 . . . 4 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4645unieqd 4944 . . 3 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4742, 43, 463eqtr4a 2806 . 2 𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
4838, 47pm2.61i 182 1 (TC‘𝐴) = ran (𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  c0 4352   cuni 4931  cmpt 5249  Tr wtr 5283  ran crn 5701  cres 5702  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  reccrdg 8465  TCctc 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-tc 9806
This theorem is referenced by:  hsmexlem5  10499
  Copyright terms: Public domain W3C validator