MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Visualization version   GIF version

Theorem itunitc 9845
Description: The union of all union iterates creates the transitive closure; compare trcl 9172. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc (TC‘𝐴) = ran (𝑈𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
2 fveq2 6672 . . . . . 6 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
32rneqd 5810 . . . . 5 (𝑎 = 𝐴 → ran (𝑈𝑎) = ran (𝑈𝐴))
43unieqd 4854 . . . 4 (𝑎 = 𝐴 ran (𝑈𝑎) = ran (𝑈𝐴))
51, 4eqeq12d 2839 . . 3 (𝑎 = 𝐴 → ((TC‘𝑎) = ran (𝑈𝑎) ↔ (TC‘𝐴) = ran (𝑈𝐴)))
6 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76ituni0 9842 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
87elv 3501 . . . . . 6 ((𝑈𝑎)‘∅) = 𝑎
9 fvssunirn 6701 . . . . . 6 ((𝑈𝑎)‘∅) ⊆ ran (𝑈𝑎)
108, 9eqsstrri 4004 . . . . 5 𝑎 ran (𝑈𝑎)
11 dftr3 5178 . . . . . 6 (Tr ran (𝑈𝑎) ↔ ∀𝑏 ran (𝑈𝑎)𝑏 ran (𝑈𝑎))
12 vex 3499 . . . . . . . 8 𝑎 ∈ V
136itunifn 9841 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
14 fnunirn 7014 . . . . . . . 8 ((𝑈𝑎) Fn ω → (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐)))
1512, 13, 14mp2b 10 . . . . . . 7 (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐))
16 elssuni 4870 . . . . . . . . 9 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ((𝑈𝑎)‘𝑐))
176itunisuc 9843 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
18 fvssunirn 6701 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) ⊆ ran (𝑈𝑎)
1917, 18eqsstrri 4004 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ ran (𝑈𝑎)
2016, 19sstrdi 3981 . . . . . . . 8 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2120rexlimivw 3284 . . . . . . 7 (∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2215, 21sylbi 219 . . . . . 6 (𝑏 ran (𝑈𝑎) → 𝑏 ran (𝑈𝑎))
2311, 22mprgbir 3155 . . . . 5 Tr ran (𝑈𝑎)
24 tcmin 9185 . . . . . 6 (𝑎 ∈ V → ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎)))
2524elv 3501 . . . . 5 ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎))
2610, 23, 25mp2an 690 . . . 4 (TC‘𝑎) ⊆ ran (𝑈𝑎)
27 unissb 4872 . . . . 5 ( ran (𝑈𝑎) ⊆ (TC‘𝑎) ↔ ∀𝑏 ∈ ran (𝑈𝑎)𝑏 ⊆ (TC‘𝑎))
28 fvelrnb 6728 . . . . . . 7 ((𝑈𝑎) Fn ω → (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏))
2912, 13, 28mp2b 10 . . . . . 6 (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏)
306itunitc1 9844 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)
3130a1i 11 . . . . . . . 8 (𝑐 ∈ ω → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
32 sseq1 3994 . . . . . . . 8 (((𝑈𝑎)‘𝑐) = 𝑏 → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) ↔ 𝑏 ⊆ (TC‘𝑎)))
3331, 32syl5ibcom 247 . . . . . . 7 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎)))
3433rexlimiv 3282 . . . . . 6 (∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎))
3529, 34sylbi 219 . . . . 5 (𝑏 ∈ ran (𝑈𝑎) → 𝑏 ⊆ (TC‘𝑎))
3627, 35mprgbir 3155 . . . 4 ran (𝑈𝑎) ⊆ (TC‘𝑎)
3726, 36eqssi 3985 . . 3 (TC‘𝑎) = ran (𝑈𝑎)
385, 37vtoclg 3569 . 2 (𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
39 rn0 5798 . . . . 5 ran ∅ = ∅
4039unieqi 4853 . . . 4 ran ∅ =
41 uni0 4868 . . . 4 ∅ = ∅
4240, 41eqtr2i 2847 . . 3 ∅ = ran ∅
43 fvprc 6665 . . 3 𝐴 ∈ V → (TC‘𝐴) = ∅)
44 fvprc 6665 . . . . 5 𝐴 ∈ V → (𝑈𝐴) = ∅)
4544rneqd 5810 . . . 4 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4645unieqd 4854 . . 3 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4742, 43, 463eqtr4a 2884 . 2 𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
4838, 47pm2.61i 184 1 (TC‘𝐴) = ran (𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  wss 3938  c0 4293   cuni 4840  cmpt 5148  Tr wtr 5174  ran crn 5558  cres 5559  suc csuc 6195   Fn wfn 6352  cfv 6357  ωcom 7582  reccrdg 8047  TCctc 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-tc 9181
This theorem is referenced by:  hsmexlem5  9854
  Copyright terms: Public domain W3C validator