MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Visualization version   GIF version

Theorem itunitc 10365
Description: The union of all union iterates creates the transitive closure; compare trcl 9672. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc (TC‘𝐴) = ran (𝑈𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
2 fveq2 6846 . . . . . 6 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
32rneqd 5897 . . . . 5 (𝑎 = 𝐴 → ran (𝑈𝑎) = ran (𝑈𝐴))
43unieqd 4883 . . . 4 (𝑎 = 𝐴 ran (𝑈𝑎) = ran (𝑈𝐴))
51, 4eqeq12d 2749 . . 3 (𝑎 = 𝐴 → ((TC‘𝑎) = ran (𝑈𝑎) ↔ (TC‘𝐴) = ran (𝑈𝐴)))
6 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76ituni0 10362 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
87elv 3453 . . . . . 6 ((𝑈𝑎)‘∅) = 𝑎
9 fvssunirn 6879 . . . . . 6 ((𝑈𝑎)‘∅) ⊆ ran (𝑈𝑎)
108, 9eqsstrri 3983 . . . . 5 𝑎 ran (𝑈𝑎)
11 dftr3 5232 . . . . . 6 (Tr ran (𝑈𝑎) ↔ ∀𝑏 ran (𝑈𝑎)𝑏 ran (𝑈𝑎))
12 vex 3451 . . . . . . . 8 𝑎 ∈ V
136itunifn 10361 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
14 fnunirn 7205 . . . . . . . 8 ((𝑈𝑎) Fn ω → (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐)))
1512, 13, 14mp2b 10 . . . . . . 7 (𝑏 ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐))
16 elssuni 4902 . . . . . . . . 9 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ((𝑈𝑎)‘𝑐))
176itunisuc 10363 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
18 fvssunirn 6879 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) ⊆ ran (𝑈𝑎)
1917, 18eqsstrri 3983 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ ran (𝑈𝑎)
2016, 19sstrdi 3960 . . . . . . . 8 (𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2120rexlimivw 3145 . . . . . . 7 (∃𝑐 ∈ ω 𝑏 ∈ ((𝑈𝑎)‘𝑐) → 𝑏 ran (𝑈𝑎))
2215, 21sylbi 216 . . . . . 6 (𝑏 ran (𝑈𝑎) → 𝑏 ran (𝑈𝑎))
2311, 22mprgbir 3068 . . . . 5 Tr ran (𝑈𝑎)
24 tcmin 9685 . . . . . 6 (𝑎 ∈ V → ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎)))
2524elv 3453 . . . . 5 ((𝑎 ran (𝑈𝑎) ∧ Tr ran (𝑈𝑎)) → (TC‘𝑎) ⊆ ran (𝑈𝑎))
2610, 23, 25mp2an 691 . . . 4 (TC‘𝑎) ⊆ ran (𝑈𝑎)
27 unissb 4904 . . . . 5 ( ran (𝑈𝑎) ⊆ (TC‘𝑎) ↔ ∀𝑏 ∈ ran (𝑈𝑎)𝑏 ⊆ (TC‘𝑎))
28 fvelrnb 6907 . . . . . . 7 ((𝑈𝑎) Fn ω → (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏))
2912, 13, 28mp2b 10 . . . . . 6 (𝑏 ∈ ran (𝑈𝑎) ↔ ∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏)
306itunitc1 10364 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)
3130a1i 11 . . . . . . . 8 (𝑐 ∈ ω → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
32 sseq1 3973 . . . . . . . 8 (((𝑈𝑎)‘𝑐) = 𝑏 → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) ↔ 𝑏 ⊆ (TC‘𝑎)))
3331, 32syl5ibcom 244 . . . . . . 7 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎)))
3433rexlimiv 3142 . . . . . 6 (∃𝑐 ∈ ω ((𝑈𝑎)‘𝑐) = 𝑏𝑏 ⊆ (TC‘𝑎))
3529, 34sylbi 216 . . . . 5 (𝑏 ∈ ran (𝑈𝑎) → 𝑏 ⊆ (TC‘𝑎))
3627, 35mprgbir 3068 . . . 4 ran (𝑈𝑎) ⊆ (TC‘𝑎)
3726, 36eqssi 3964 . . 3 (TC‘𝑎) = ran (𝑈𝑎)
385, 37vtoclg 3527 . 2 (𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
39 rn0 5885 . . . . 5 ran ∅ = ∅
4039unieqi 4882 . . . 4 ran ∅ =
41 uni0 4900 . . . 4 ∅ = ∅
4240, 41eqtr2i 2762 . . 3 ∅ = ran ∅
43 fvprc 6838 . . 3 𝐴 ∈ V → (TC‘𝐴) = ∅)
44 fvprc 6838 . . . . 5 𝐴 ∈ V → (𝑈𝐴) = ∅)
4544rneqd 5897 . . . 4 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4645unieqd 4883 . . 3 𝐴 ∈ V → ran (𝑈𝐴) = ran ∅)
4742, 43, 463eqtr4a 2799 . 2 𝐴 ∈ V → (TC‘𝐴) = ran (𝑈𝐴))
4838, 47pm2.61i 182 1 (TC‘𝐴) = ran (𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3070  Vcvv 3447  wss 3914  c0 4286   cuni 4869  cmpt 5192  Tr wtr 5226  ran crn 5638  cres 5639  suc csuc 6323   Fn wfn 6495  cfv 6500  ωcom 7806  reccrdg 8359  TCctc 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-tc 9681
This theorem is referenced by:  hsmexlem5  10374
  Copyright terms: Public domain W3C validator