Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd2rabtr Structured version   Visualization version   GIF version

Theorem nadd2rabtr 43346
Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd2rabtr ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd2rabtr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1212 . . . . . . 7 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → Ord 𝐴)
2 simplr 768 . . . . . . 7 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝑦𝐴)
3 ordelss 6411 . . . . . . 7 ((Ord 𝐴𝑦𝐴) → 𝑦𝐴)
41, 2, 3syl2anc 583 . . . . . 6 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝑦𝐴)
5 simpll3 1214 . . . . . . . 8 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝐶 ∈ On)
65adantr 480 . . . . . . 7 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝐶 ∈ On)
7 simpr 484 . . . . . . . . 9 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑥𝑦)
81adantr 480 . . . . . . . . . . . 12 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → Ord 𝐴)
9 simpllr 775 . . . . . . . . . . . 12 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑦𝐴)
10 ordelon 6419 . . . . . . . . . . . 12 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
118, 9, 10syl2anc 583 . . . . . . . . . . 11 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑦 ∈ On)
12 onelon 6420 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1311, 7, 12syl2anc 583 . . . . . . . . . 10 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑥 ∈ On)
14 simpll2 1213 . . . . . . . . . . 11 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝐵 ∈ On)
1514adantr 480 . . . . . . . . . 10 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝐵 ∈ On)
16 naddel2 8744 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝑦 ↔ (𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦)))
1713, 11, 15, 16syl3anc 1371 . . . . . . . . 9 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦)))
187, 17mpbid 232 . . . . . . . 8 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦))
19 simplr 768 . . . . . . . 8 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝐵 +no 𝑦) ∈ 𝐶)
2018, 19jca 511 . . . . . . 7 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → ((𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦) ∧ (𝐵 +no 𝑦) ∈ 𝐶))
21 ontr1 6441 . . . . . . 7 (𝐶 ∈ On → (((𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → (𝐵 +no 𝑥) ∈ 𝐶))
226, 20, 21sylc 65 . . . . . 6 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝐵 +no 𝑥) ∈ 𝐶)
234, 22ssrabdv 4097 . . . . 5 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
2423ex 412 . . . 4 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) → ((𝐵 +no 𝑦) ∈ 𝐶𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}))
2524ralrimiva 3152 . . 3 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → ∀𝑦𝐴 ((𝐵 +no 𝑦) ∈ 𝐶𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}))
26 oveq2 7456 . . . . 5 (𝑥 = 𝑦 → (𝐵 +no 𝑥) = (𝐵 +no 𝑦))
2726eleq1d 2829 . . . 4 (𝑥 = 𝑦 → ((𝐵 +no 𝑥) ∈ 𝐶 ↔ (𝐵 +no 𝑦) ∈ 𝐶))
2827ralrab 3715 . . 3 (∀𝑦 ∈ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ ∀𝑦𝐴 ((𝐵 +no 𝑦) ∈ 𝐶𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}))
2925, 28sylibr 234 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → ∀𝑦 ∈ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
30 dftr3 5289 . 2 (Tr {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ ∀𝑦 ∈ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
3129, 30sylibr 234 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wral 3067  {crab 3443  wss 3976  Tr wtr 5283  Ord word 6394  Oncon0 6395  (class class class)co 7448   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  nadd2rabord  43347  nadd1rabtr  43350
  Copyright terms: Public domain W3C validator