Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd2rabtr Structured version   Visualization version   GIF version

Theorem nadd2rabtr 43373
Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd2rabtr ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd2rabtr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . . . . . 7 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → Ord 𝐴)
2 simplr 768 . . . . . . 7 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝑦𝐴)
3 ordelss 6348 . . . . . . 7 ((Ord 𝐴𝑦𝐴) → 𝑦𝐴)
41, 2, 3syl2anc 584 . . . . . 6 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝑦𝐴)
5 simpll3 1215 . . . . . . . 8 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝐶 ∈ On)
65adantr 480 . . . . . . 7 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝐶 ∈ On)
7 simpr 484 . . . . . . . . 9 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑥𝑦)
81adantr 480 . . . . . . . . . . . 12 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → Ord 𝐴)
9 simpllr 775 . . . . . . . . . . . 12 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑦𝐴)
10 ordelon 6356 . . . . . . . . . . . 12 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
118, 9, 10syl2anc 584 . . . . . . . . . . 11 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑦 ∈ On)
12 onelon 6357 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1311, 7, 12syl2anc 584 . . . . . . . . . 10 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝑥 ∈ On)
14 simpll2 1214 . . . . . . . . . . 11 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝐵 ∈ On)
1514adantr 480 . . . . . . . . . 10 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → 𝐵 ∈ On)
16 naddel2 8652 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝑦 ↔ (𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦)))
1713, 11, 15, 16syl3anc 1373 . . . . . . . . 9 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦)))
187, 17mpbid 232 . . . . . . . 8 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦))
19 simplr 768 . . . . . . . 8 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝐵 +no 𝑦) ∈ 𝐶)
2018, 19jca 511 . . . . . . 7 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → ((𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦) ∧ (𝐵 +no 𝑦) ∈ 𝐶))
21 ontr1 6379 . . . . . . 7 (𝐶 ∈ On → (((𝐵 +no 𝑥) ∈ (𝐵 +no 𝑦) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → (𝐵 +no 𝑥) ∈ 𝐶))
226, 20, 21sylc 65 . . . . . 6 (((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) ∧ 𝑥𝑦) → (𝐵 +no 𝑥) ∈ 𝐶)
234, 22ssrabdv 4037 . . . . 5 ((((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) ∧ (𝐵 +no 𝑦) ∈ 𝐶) → 𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
2423ex 412 . . . 4 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑦𝐴) → ((𝐵 +no 𝑦) ∈ 𝐶𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}))
2524ralrimiva 3125 . . 3 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → ∀𝑦𝐴 ((𝐵 +no 𝑦) ∈ 𝐶𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}))
26 oveq2 7395 . . . . 5 (𝑥 = 𝑦 → (𝐵 +no 𝑥) = (𝐵 +no 𝑦))
2726eleq1d 2813 . . . 4 (𝑥 = 𝑦 → ((𝐵 +no 𝑥) ∈ 𝐶 ↔ (𝐵 +no 𝑦) ∈ 𝐶))
2827ralrab 3665 . . 3 (∀𝑦 ∈ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ ∀𝑦𝐴 ((𝐵 +no 𝑦) ∈ 𝐶𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}))
2925, 28sylibr 234 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → ∀𝑦 ∈ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
30 dftr3 5220 . 2 (Tr {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ ∀𝑦 ∈ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}𝑦 ⊆ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
3129, 30sylibr 234 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3044  {crab 3405  wss 3914  Tr wtr 5214  Ord word 6331  Oncon0 6332  (class class class)co 7387   +no cnadd 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-nadd 8630
This theorem is referenced by:  nadd2rabord  43374  nadd1rabtr  43377
  Copyright terms: Public domain W3C validator