MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Visualization version   GIF version

Theorem ordtypelem2 9278
Description: Lemma for ordtype 9291. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem2 (𝜑 → Ord 𝑇)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
21ssrab3 4015 . . . . . . . . 9 𝑇 ⊆ On
32a1i 11 . . . . . . . 8 (𝜑𝑇 ⊆ On)
43sselda 3921 . . . . . . 7 ((𝜑𝑎𝑇) → 𝑎 ∈ On)
5 onss 7634 . . . . . . 7 (𝑎 ∈ On → 𝑎 ⊆ On)
64, 5syl 17 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎 ⊆ On)
7 eloni 6276 . . . . . . . 8 (𝑎 ∈ On → Ord 𝑎)
84, 7syl 17 . . . . . . 7 ((𝜑𝑎𝑇) → Ord 𝑎)
9 imaeq2 5965 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109raleqdv 3348 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1110rexbidv 3226 . . . . . . . . . 10 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1211, 1elrab2 3627 . . . . . . . . 9 (𝑎𝑇 ↔ (𝑎 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1312simprbi 497 . . . . . . . 8 (𝑎𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
1413adantl 482 . . . . . . 7 ((𝜑𝑎𝑇) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
15 ordelss 6282 . . . . . . . . 9 ((Ord 𝑎𝑥𝑎) → 𝑥𝑎)
16 imass2 6010 . . . . . . . . 9 (𝑥𝑎 → (𝐹𝑥) ⊆ (𝐹𝑎))
17 ssralv 3987 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1817reximdv 3202 . . . . . . . . 9 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1915, 16, 183syl 18 . . . . . . . 8 ((Ord 𝑎𝑥𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
2019ralrimdva 3106 . . . . . . 7 (Ord 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
218, 14, 20sylc 65 . . . . . 6 ((𝜑𝑎𝑇) → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡)
22 ssrab 4006 . . . . . 6 (𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} ↔ (𝑎 ⊆ On ∧ ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
236, 21, 22sylanbrc 583 . . . . 5 ((𝜑𝑎𝑇) → 𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡})
2423, 1sseqtrrdi 3972 . . . 4 ((𝜑𝑎𝑇) → 𝑎𝑇)
2524ralrimiva 3103 . . 3 (𝜑 → ∀𝑎𝑇 𝑎𝑇)
26 dftr3 5195 . . 3 (Tr 𝑇 ↔ ∀𝑎𝑇 𝑎𝑇)
2725, 26sylibr 233 . 2 (𝜑 → Tr 𝑇)
28 ordon 7627 . . 3 Ord On
29 trssord 6283 . . 3 ((Tr 𝑇𝑇 ⊆ On ∧ Ord On) → Ord 𝑇)
302, 28, 29mp3an23 1452 . 2 (Tr 𝑇 → Ord 𝑇)
3127, 30syl 17 1 (𝜑 → Ord 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  Tr wtr 5191   Se wse 5542   We wwe 5543  ran crn 5590  cima 5592  Ord word 6265  Oncon0 6266  crio 7231  recscrecs 8201  OrdIsocoi 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270
This theorem is referenced by:  ordtypelem5  9281  ordtypelem6  9282  ordtypelem7  9283  ordtypelem8  9284  ordtypelem9  9285
  Copyright terms: Public domain W3C validator