MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Visualization version   GIF version

Theorem ordtypelem2 9430
Description: Lemma for ordtype 9443. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem2 (𝜑 → Ord 𝑇)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
21ssrab3 4035 . . . . . . . . 9 𝑇 ⊆ On
32a1i 11 . . . . . . . 8 (𝜑𝑇 ⊆ On)
43sselda 3937 . . . . . . 7 ((𝜑𝑎𝑇) → 𝑎 ∈ On)
5 onss 7725 . . . . . . 7 (𝑎 ∈ On → 𝑎 ⊆ On)
64, 5syl 17 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎 ⊆ On)
7 eloni 6321 . . . . . . . 8 (𝑎 ∈ On → Ord 𝑎)
84, 7syl 17 . . . . . . 7 ((𝜑𝑎𝑇) → Ord 𝑎)
9 imaeq2 6011 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109raleqdv 3290 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1110rexbidv 3153 . . . . . . . . . 10 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1211, 1elrab2 3653 . . . . . . . . 9 (𝑎𝑇 ↔ (𝑎 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1312simprbi 496 . . . . . . . 8 (𝑎𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
1413adantl 481 . . . . . . 7 ((𝜑𝑎𝑇) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
15 ordelss 6327 . . . . . . . . 9 ((Ord 𝑎𝑥𝑎) → 𝑥𝑎)
16 imass2 6057 . . . . . . . . 9 (𝑥𝑎 → (𝐹𝑥) ⊆ (𝐹𝑎))
17 ssralv 4006 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1817reximdv 3144 . . . . . . . . 9 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1915, 16, 183syl 18 . . . . . . . 8 ((Ord 𝑎𝑥𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
2019ralrimdva 3129 . . . . . . 7 (Ord 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
218, 14, 20sylc 65 . . . . . 6 ((𝜑𝑎𝑇) → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡)
22 ssrab 4026 . . . . . 6 (𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} ↔ (𝑎 ⊆ On ∧ ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
236, 21, 22sylanbrc 583 . . . . 5 ((𝜑𝑎𝑇) → 𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡})
2423, 1sseqtrrdi 3979 . . . 4 ((𝜑𝑎𝑇) → 𝑎𝑇)
2524ralrimiva 3121 . . 3 (𝜑 → ∀𝑎𝑇 𝑎𝑇)
26 dftr3 5207 . . 3 (Tr 𝑇 ↔ ∀𝑎𝑇 𝑎𝑇)
2725, 26sylibr 234 . 2 (𝜑 → Tr 𝑇)
28 ordon 7717 . . 3 Ord On
29 trssord 6328 . . 3 ((Tr 𝑇𝑇 ⊆ On ∧ Ord On) → Ord 𝑇)
302, 28, 29mp3an23 1455 . 2 (Tr 𝑇 → Ord 𝑇)
3127, 30syl 17 1 (𝜑 → Ord 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  wss 3905   class class class wbr 5095  cmpt 5176  Tr wtr 5202   Se wse 5574   We wwe 5575  ran crn 5624  cima 5626  Ord word 6310  Oncon0 6311  crio 7309  recscrecs 8300  OrdIsocoi 9420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315
This theorem is referenced by:  ordtypelem5  9433  ordtypelem6  9434  ordtypelem7  9435  ordtypelem8  9436  ordtypelem9  9437
  Copyright terms: Public domain W3C validator