Step | Hyp | Ref
| Expression |
1 | | ordtypelem.5 |
. . . . . . . . . 10
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
2 | 1 | ssrab3 4015 |
. . . . . . . . 9
⊢ 𝑇 ⊆ On |
3 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ⊆ On) |
4 | 3 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ∈ On) |
5 | | onss 7634 |
. . . . . . 7
⊢ (𝑎 ∈ On → 𝑎 ⊆ On) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ⊆ On) |
7 | | eloni 6276 |
. . . . . . . 8
⊢ (𝑎 ∈ On → Ord 𝑎) |
8 | 4, 7 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → Ord 𝑎) |
9 | | imaeq2 5965 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝐹 “ 𝑥) = (𝐹 “ 𝑎)) |
10 | 9 | raleqdv 3348 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡)) |
11 | 10 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡)) |
12 | 11, 1 | elrab2 3627 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝑇 ↔ (𝑎 ∈ On ∧ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡)) |
13 | 12 | simprbi 497 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝑇 → ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡) |
14 | 13 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡) |
15 | | ordelss 6282 |
. . . . . . . . 9
⊢ ((Ord
𝑎 ∧ 𝑥 ∈ 𝑎) → 𝑥 ⊆ 𝑎) |
16 | | imass2 6010 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝑎 → (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑎)) |
17 | | ssralv 3987 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑎) → (∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡 → ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡)) |
18 | 17 | reximdv 3202 |
. . . . . . . . 9
⊢ ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑎) → (∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡 → ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡)) |
19 | 15, 16, 18 | 3syl 18 |
. . . . . . . 8
⊢ ((Ord
𝑎 ∧ 𝑥 ∈ 𝑎) → (∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡 → ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡)) |
20 | 19 | ralrimdva 3106 |
. . . . . . 7
⊢ (Ord
𝑎 → (∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑎)𝑧𝑅𝑡 → ∀𝑥 ∈ 𝑎 ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡)) |
21 | 8, 14, 20 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → ∀𝑥 ∈ 𝑎 ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡) |
22 | | ssrab 4006 |
. . . . . 6
⊢ (𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} ↔ (𝑎 ⊆ On ∧ ∀𝑥 ∈ 𝑎 ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡)) |
23 | 6, 21, 22 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}) |
24 | 23, 1 | sseqtrrdi 3972 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑇) → 𝑎 ⊆ 𝑇) |
25 | 24 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑇 𝑎 ⊆ 𝑇) |
26 | | dftr3 5195 |
. . 3
⊢ (Tr 𝑇 ↔ ∀𝑎 ∈ 𝑇 𝑎 ⊆ 𝑇) |
27 | 25, 26 | sylibr 233 |
. 2
⊢ (𝜑 → Tr 𝑇) |
28 | | ordon 7627 |
. . 3
⊢ Ord
On |
29 | | trssord 6283 |
. . 3
⊢ ((Tr
𝑇 ∧ 𝑇 ⊆ On ∧ Ord On) → Ord 𝑇) |
30 | 2, 28, 29 | mp3an23 1452 |
. 2
⊢ (Tr 𝑇 → Ord 𝑇) |
31 | 27, 30 | syl 17 |
1
⊢ (𝜑 → Ord 𝑇) |