MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Visualization version   GIF version

Theorem ordtypelem2 9208
Description: Lemma for ordtype 9221. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem2 (𝜑 → Ord 𝑇)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
21ssrab3 4011 . . . . . . . . 9 𝑇 ⊆ On
32a1i 11 . . . . . . . 8 (𝜑𝑇 ⊆ On)
43sselda 3917 . . . . . . 7 ((𝜑𝑎𝑇) → 𝑎 ∈ On)
5 onss 7611 . . . . . . 7 (𝑎 ∈ On → 𝑎 ⊆ On)
64, 5syl 17 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎 ⊆ On)
7 eloni 6261 . . . . . . . 8 (𝑎 ∈ On → Ord 𝑎)
84, 7syl 17 . . . . . . 7 ((𝜑𝑎𝑇) → Ord 𝑎)
9 imaeq2 5954 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109raleqdv 3339 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1110rexbidv 3225 . . . . . . . . . 10 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1211, 1elrab2 3620 . . . . . . . . 9 (𝑎𝑇 ↔ (𝑎 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1312simprbi 496 . . . . . . . 8 (𝑎𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
1413adantl 481 . . . . . . 7 ((𝜑𝑎𝑇) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
15 ordelss 6267 . . . . . . . . 9 ((Ord 𝑎𝑥𝑎) → 𝑥𝑎)
16 imass2 5999 . . . . . . . . 9 (𝑥𝑎 → (𝐹𝑥) ⊆ (𝐹𝑎))
17 ssralv 3983 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1817reximdv 3201 . . . . . . . . 9 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1915, 16, 183syl 18 . . . . . . . 8 ((Ord 𝑎𝑥𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
2019ralrimdva 3112 . . . . . . 7 (Ord 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
218, 14, 20sylc 65 . . . . . 6 ((𝜑𝑎𝑇) → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡)
22 ssrab 4002 . . . . . 6 (𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} ↔ (𝑎 ⊆ On ∧ ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
236, 21, 22sylanbrc 582 . . . . 5 ((𝜑𝑎𝑇) → 𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡})
2423, 1sseqtrrdi 3968 . . . 4 ((𝜑𝑎𝑇) → 𝑎𝑇)
2524ralrimiva 3107 . . 3 (𝜑 → ∀𝑎𝑇 𝑎𝑇)
26 dftr3 5191 . . 3 (Tr 𝑇 ↔ ∀𝑎𝑇 𝑎𝑇)
2725, 26sylibr 233 . 2 (𝜑 → Tr 𝑇)
28 ordon 7604 . . 3 Ord On
29 trssord 6268 . . 3 ((Tr 𝑇𝑇 ⊆ On ∧ Ord On) → Ord 𝑇)
302, 28, 29mp3an23 1451 . 2 (Tr 𝑇 → Ord 𝑇)
3127, 30syl 17 1 (𝜑 → Ord 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  Tr wtr 5187   Se wse 5533   We wwe 5534  ran crn 5581  cima 5583  Ord word 6250  Oncon0 6251  crio 7211  recscrecs 8172  OrdIsocoi 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255
This theorem is referenced by:  ordtypelem5  9211  ordtypelem6  9212  ordtypelem7  9213  ordtypelem8  9214  ordtypelem9  9215
  Copyright terms: Public domain W3C validator