MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Visualization version   GIF version

Theorem ordtypelem2 9377
Description: Lemma for ordtype 9390. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem2 (𝜑 → Ord 𝑇)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
21ssrab3 4028 . . . . . . . . 9 𝑇 ⊆ On
32a1i 11 . . . . . . . 8 (𝜑𝑇 ⊆ On)
43sselda 3932 . . . . . . 7 ((𝜑𝑎𝑇) → 𝑎 ∈ On)
5 onss 7698 . . . . . . 7 (𝑎 ∈ On → 𝑎 ⊆ On)
64, 5syl 17 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎 ⊆ On)
7 eloni 6313 . . . . . . . 8 (𝑎 ∈ On → Ord 𝑎)
84, 7syl 17 . . . . . . 7 ((𝜑𝑎𝑇) → Ord 𝑎)
9 imaeq2 5996 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109raleqdv 3309 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1110rexbidv 3171 . . . . . . . . . 10 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1211, 1elrab2 3637 . . . . . . . . 9 (𝑎𝑇 ↔ (𝑎 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1312simprbi 497 . . . . . . . 8 (𝑎𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
1413adantl 482 . . . . . . 7 ((𝜑𝑎𝑇) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
15 ordelss 6319 . . . . . . . . 9 ((Ord 𝑎𝑥𝑎) → 𝑥𝑎)
16 imass2 6041 . . . . . . . . 9 (𝑥𝑎 → (𝐹𝑥) ⊆ (𝐹𝑎))
17 ssralv 3998 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1817reximdv 3163 . . . . . . . . 9 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1915, 16, 183syl 18 . . . . . . . 8 ((Ord 𝑎𝑥𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
2019ralrimdva 3147 . . . . . . 7 (Ord 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
218, 14, 20sylc 65 . . . . . 6 ((𝜑𝑎𝑇) → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡)
22 ssrab 4018 . . . . . 6 (𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} ↔ (𝑎 ⊆ On ∧ ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
236, 21, 22sylanbrc 583 . . . . 5 ((𝜑𝑎𝑇) → 𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡})
2423, 1sseqtrrdi 3983 . . . 4 ((𝜑𝑎𝑇) → 𝑎𝑇)
2524ralrimiva 3139 . . 3 (𝜑 → ∀𝑎𝑇 𝑎𝑇)
26 dftr3 5216 . . 3 (Tr 𝑇 ↔ ∀𝑎𝑇 𝑎𝑇)
2725, 26sylibr 233 . 2 (𝜑 → Tr 𝑇)
28 ordon 7690 . . 3 Ord On
29 trssord 6320 . . 3 ((Tr 𝑇𝑇 ⊆ On ∧ Ord On) → Ord 𝑇)
302, 28, 29mp3an23 1452 . 2 (Tr 𝑇 → Ord 𝑇)
3127, 30syl 17 1 (𝜑 → Ord 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {crab 3403  Vcvv 3441  wss 3898   class class class wbr 5093  cmpt 5176  Tr wtr 5210   Se wse 5574   We wwe 5575  ran crn 5622  cima 5624  Ord word 6302  Oncon0 6303  crio 7293  recscrecs 8272  OrdIsocoi 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-tr 5211  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6306  df-on 6307
This theorem is referenced by:  ordtypelem5  9380  ordtypelem6  9381  ordtypelem7  9382  ordtypelem8  9383  ordtypelem9  9384
  Copyright terms: Public domain W3C validator