Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfgru | Structured version Visualization version GIF version |
Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
wfgru | ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5199 | . . 3 ⊢ (Tr ∪ (𝑅1 “ On) ↔ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On)) | |
2 | r1elssi 9547 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
3 | 1, 2 | mprgbir 3080 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
4 | pwwf 9549 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
6 | prwf 9553 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → {𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) | |
7 | 6 | ralrimiva 3109 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) |
8 | frn 6603 | . . . . . . 7 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ran 𝑦 ⊆ ∪ (𝑅1 “ On)) | |
9 | vex 3434 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
10 | 9 | rnex 7746 | . . . . . . . . 9 ⊢ ran 𝑦 ∈ V |
11 | 10 | r1elss 9548 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑦 ⊆ ∪ (𝑅1 “ On)) |
12 | uniwf 9561 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) | |
13 | 11, 12 | bitr3i 276 | . . . . . . 7 ⊢ (ran 𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
14 | 8, 13 | sylib 217 | . . . . . 6 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
15 | 14 | ax-gen 1801 | . . . . 5 ⊢ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
17 | 5, 7, 16 | 3jca 1126 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) |
18 | 17 | rgen 3075 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
19 | ingru 10555 | . 2 ⊢ ((Tr ∪ (𝑅1 “ On) ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ)) | |
20 | 3, 18, 19 | mp2an 688 | 1 ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∀wal 1539 ∈ wcel 2109 ∀wral 3065 ∩ cin 3890 ⊆ wss 3891 𝒫 cpw 4538 {cpr 4568 ∪ cuni 4844 Tr wtr 5195 ran crn 5589 “ cima 5591 Oncon0 6263 ⟶wf 6426 𝑅1cr1 9504 Univcgru 10530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-map 8591 df-r1 9506 df-rank 9507 df-gru 10531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |