| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfgru | Structured version Visualization version GIF version | ||
| Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| wfgru | ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5223 | . . 3 ⊢ (Tr ∪ (𝑅1 “ On) ↔ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | r1elssi 9765 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 3 | 1, 2 | mprgbir 3052 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
| 4 | pwwf 9767 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 6 | prwf 9771 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → {𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) | |
| 7 | 6 | ralrimiva 3126 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) |
| 8 | frn 6698 | . . . . . . 7 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ran 𝑦 ⊆ ∪ (𝑅1 “ On)) | |
| 9 | vex 3454 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 9 | rnex 7889 | . . . . . . . . 9 ⊢ ran 𝑦 ∈ V |
| 11 | 10 | r1elss 9766 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 12 | uniwf 9779 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 13 | 11, 12 | bitr3i 277 | . . . . . . 7 ⊢ (ran 𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 14 | 8, 13 | sylib 218 | . . . . . 6 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 15 | 14 | ax-gen 1795 | . . . . 5 ⊢ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 17 | 5, 7, 16 | 3jca 1128 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 18 | 17 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | ingru 10775 | . 2 ⊢ ((Tr ∪ (𝑅1 “ On) ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ)) | |
| 20 | 3, 18, 19 | mp2an 692 | 1 ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 {cpr 4594 ∪ cuni 4874 Tr wtr 5217 ran crn 5642 “ cima 5644 Oncon0 6335 ⟶wf 6510 𝑅1cr1 9722 Univcgru 10750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-r1 9724 df-rank 9725 df-gru 10751 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |