MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfgru Structured version   Visualization version   GIF version

Theorem wfgru 10556
Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
wfgru (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)

Proof of Theorem wfgru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5199 . . 3 (Tr (𝑅1 “ On) ↔ ∀𝑥 (𝑅1 “ On)𝑥 (𝑅1 “ On))
2 r1elssi 9547 . . 3 (𝑥 (𝑅1 “ On) → 𝑥 (𝑅1 “ On))
31, 2mprgbir 3080 . 2 Tr (𝑅1 “ On)
4 pwwf 9549 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
54biimpi 215 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
6 prwf 9553 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
76ralrimiva 3109 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On))
8 frn 6603 . . . . . . 7 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
9 vex 3434 . . . . . . . . . 10 𝑦 ∈ V
109rnex 7746 . . . . . . . . 9 ran 𝑦 ∈ V
1110r1elss 9548 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
12 uniwf 9561 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
1311, 12bitr3i 276 . . . . . . 7 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
148, 13sylib 217 . . . . . 6 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1514ax-gen 1801 . . . . 5 𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1615a1i 11 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
175, 7, 163jca 1126 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))))
1817rgen 3075 . 2 𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
19 ingru 10555 . 2 ((Tr (𝑅1 “ On) ∧ ∀𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ))
203, 18, 19mp2an 688 1 (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wal 1539  wcel 2109  wral 3065  cin 3890  wss 3891  𝒫 cpw 4538  {cpr 4568   cuni 4844  Tr wtr 5195  ran crn 5589  cima 5591  Oncon0 6263  wf 6426  𝑅1cr1 9504  Univcgru 10530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-map 8591  df-r1 9506  df-rank 9507  df-gru 10531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator