| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfgru | Structured version Visualization version GIF version | ||
| Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| wfgru | ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5215 | . . 3 ⊢ (Tr ∪ (𝑅1 “ On) ↔ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | r1elssi 9734 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 3 | 1, 2 | mprgbir 3051 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
| 4 | pwwf 9736 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 6 | prwf 9740 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → {𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) | |
| 7 | 6 | ralrimiva 3125 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) |
| 8 | frn 6677 | . . . . . . 7 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ran 𝑦 ⊆ ∪ (𝑅1 “ On)) | |
| 9 | vex 3448 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 9 | rnex 7866 | . . . . . . . . 9 ⊢ ran 𝑦 ∈ V |
| 11 | 10 | r1elss 9735 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 12 | uniwf 9748 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 13 | 11, 12 | bitr3i 277 | . . . . . . 7 ⊢ (ran 𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 14 | 8, 13 | sylib 218 | . . . . . 6 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 15 | 14 | ax-gen 1795 | . . . . 5 ⊢ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 17 | 5, 7, 16 | 3jca 1128 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 18 | 17 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | ingru 10744 | . 2 ⊢ ((Tr ∪ (𝑅1 “ On) ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ)) | |
| 20 | 3, 18, 19 | mp2an 692 | 1 ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 {cpr 4587 ∪ cuni 4867 Tr wtr 5209 ran crn 5632 “ cima 5634 Oncon0 6320 ⟶wf 6495 𝑅1cr1 9691 Univcgru 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-map 8778 df-r1 9693 df-rank 9694 df-gru 10720 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |