| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfgru | Structured version Visualization version GIF version | ||
| Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| wfgru | ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5235 | . . 3 ⊢ (Tr ∪ (𝑅1 “ On) ↔ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | r1elssi 9819 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 3 | 1, 2 | mprgbir 3058 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
| 4 | pwwf 9821 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 6 | prwf 9825 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → {𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) | |
| 7 | 6 | ralrimiva 3132 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) |
| 8 | frn 6713 | . . . . . . 7 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ran 𝑦 ⊆ ∪ (𝑅1 “ On)) | |
| 9 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 9 | rnex 7906 | . . . . . . . . 9 ⊢ ran 𝑦 ∈ V |
| 11 | 10 | r1elss 9820 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 12 | uniwf 9833 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 13 | 11, 12 | bitr3i 277 | . . . . . . 7 ⊢ (ran 𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 14 | 8, 13 | sylib 218 | . . . . . 6 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 15 | 14 | ax-gen 1795 | . . . . 5 ⊢ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 17 | 5, 7, 16 | 3jca 1128 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 18 | 17 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | ingru 10829 | . 2 ⊢ ((Tr ∪ (𝑅1 “ On) ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ)) | |
| 20 | 3, 18, 19 | mp2an 692 | 1 ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∀wal 1538 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 {cpr 4603 ∪ cuni 4883 Tr wtr 5229 ran crn 5655 “ cima 5657 Oncon0 6352 ⟶wf 6527 𝑅1cr1 9776 Univcgru 10804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8842 df-r1 9778 df-rank 9779 df-gru 10805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |