MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfgru Structured version   Visualization version   GIF version

Theorem wfgru 10745
Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
wfgru (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)

Proof of Theorem wfgru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5215 . . 3 (Tr (𝑅1 “ On) ↔ ∀𝑥 (𝑅1 “ On)𝑥 (𝑅1 “ On))
2 r1elssi 9734 . . 3 (𝑥 (𝑅1 “ On) → 𝑥 (𝑅1 “ On))
31, 2mprgbir 3051 . 2 Tr (𝑅1 “ On)
4 pwwf 9736 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
54biimpi 216 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
6 prwf 9740 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
76ralrimiva 3125 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On))
8 frn 6677 . . . . . . 7 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
9 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
109rnex 7866 . . . . . . . . 9 ran 𝑦 ∈ V
1110r1elss 9735 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
12 uniwf 9748 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
1311, 12bitr3i 277 . . . . . . 7 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
148, 13sylib 218 . . . . . 6 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1514ax-gen 1795 . . . . 5 𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1615a1i 11 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
175, 7, 163jca 1128 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))))
1817rgen 3046 . 2 𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
19 ingru 10744 . 2 ((Tr (𝑅1 “ On) ∧ ∀𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ))
203, 18, 19mp2an 692 1 (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wal 1538  wcel 2109  wral 3044  cin 3910  wss 3911  𝒫 cpw 4559  {cpr 4587   cuni 4867  Tr wtr 5209  ran crn 5632  cima 5634  Oncon0 6320  wf 6495  𝑅1cr1 9691  Univcgru 10719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-map 8778  df-r1 9693  df-rank 9694  df-gru 10720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator