![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfgru | Structured version Visualization version GIF version |
Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
wfgru | ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5271 | . . 3 ⊢ (Tr ∪ (𝑅1 “ On) ↔ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On)) | |
2 | r1elssi 9806 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
3 | 1, 2 | mprgbir 3067 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
4 | pwwf 9808 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
6 | prwf 9812 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → {𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) | |
7 | 6 | ralrimiva 3145 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On)) |
8 | frn 6724 | . . . . . . 7 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ran 𝑦 ⊆ ∪ (𝑅1 “ On)) | |
9 | vex 3477 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
10 | 9 | rnex 7907 | . . . . . . . . 9 ⊢ ran 𝑦 ∈ V |
11 | 10 | r1elss 9807 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑦 ⊆ ∪ (𝑅1 “ On)) |
12 | uniwf 9820 | . . . . . . . 8 ⊢ (ran 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) | |
13 | 11, 12 | bitr3i 277 | . . . . . . 7 ⊢ (ran 𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
14 | 8, 13 | sylib 217 | . . . . . 6 ⊢ (𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
15 | 14 | ax-gen 1796 | . . . . 5 ⊢ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
17 | 5, 7, 16 | 3jca 1127 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) |
18 | 17 | rgen 3062 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On))) |
19 | ingru 10816 | . 2 ⊢ ((Tr ∪ (𝑅1 “ On) ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)(𝒫 𝑥 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ ∪ (𝑅1 “ On){𝑥, 𝑦} ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥⟶∪ (𝑅1 “ On) → ∪ ran 𝑦 ∈ ∪ (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ)) | |
20 | 3, 18, 19 | mp2an 689 | 1 ⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∀wal 1538 ∈ wcel 2105 ∀wral 3060 ∩ cin 3947 ⊆ wss 3948 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 ran crn 5677 “ cima 5679 Oncon0 6364 ⟶wf 6539 𝑅1cr1 9763 Univcgru 10791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-map 8828 df-r1 9765 df-rank 9766 df-gru 10792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |