MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfgru Structured version   Visualization version   GIF version

Theorem wfgru 10776
Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
wfgru (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)

Proof of Theorem wfgru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5223 . . 3 (Tr (𝑅1 “ On) ↔ ∀𝑥 (𝑅1 “ On)𝑥 (𝑅1 “ On))
2 r1elssi 9765 . . 3 (𝑥 (𝑅1 “ On) → 𝑥 (𝑅1 “ On))
31, 2mprgbir 3052 . 2 Tr (𝑅1 “ On)
4 pwwf 9767 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
54biimpi 216 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
6 prwf 9771 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
76ralrimiva 3126 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On))
8 frn 6698 . . . . . . 7 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
9 vex 3454 . . . . . . . . . 10 𝑦 ∈ V
109rnex 7889 . . . . . . . . 9 ran 𝑦 ∈ V
1110r1elss 9766 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
12 uniwf 9779 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
1311, 12bitr3i 277 . . . . . . 7 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
148, 13sylib 218 . . . . . 6 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1514ax-gen 1795 . . . . 5 𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1615a1i 11 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
175, 7, 163jca 1128 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))))
1817rgen 3047 . 2 𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
19 ingru 10775 . 2 ((Tr (𝑅1 “ On) ∧ ∀𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ))
203, 18, 19mp2an 692 1 (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wal 1538  wcel 2109  wral 3045  cin 3916  wss 3917  𝒫 cpw 4566  {cpr 4594   cuni 4874  Tr wtr 5217  ran crn 5642  cima 5644  Oncon0 6335  wf 6510  𝑅1cr1 9722  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-map 8804  df-r1 9724  df-rank 9725  df-gru 10751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator