![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifellem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for pmtrdifel 19347. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem1 | ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
3 | 1, 2 | pmtrfb 19332 | . 2 ⊢ (𝑄 ∈ 𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
4 | difsnexi 7747 | . . 3 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | |
5 | f1of 6833 | . . . 4 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) | |
6 | fdm 6726 | . . . 4 ⊢ (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾})) | |
7 | difssd 4132 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄) | |
8 | dmss 5902 | . . . . . 6 ⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
10 | difssd 4132 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
11 | sseq1 4007 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄 ⊆ 𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | |
12 | 10, 11 | mpbird 256 | . . . . 5 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄 ⊆ 𝑁) |
13 | 9, 12 | sstrd 3992 | . . . 4 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
14 | 5, 6, 13 | 3syl 18 | . . 3 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
15 | id 22 | . . 3 ⊢ (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o) | |
16 | pmtrdifel.0 | . . . 4 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
17 | eqid 2732 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
18 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
19 | 17, 18 | pmtrrn 19324 | . . . 4 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∈ 𝑅) |
20 | 16, 19 | eqeltrid 2837 | . . 3 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆 ∈ 𝑅) |
21 | 4, 14, 15, 20 | syl3an 1160 | . 2 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆 ∈ 𝑅) |
22 | 3, 21 | sylbi 216 | 1 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 class class class wbr 5148 I cid 5573 dom cdm 5676 ran crn 5677 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 2oc2o 8459 ≈ cen 8935 pmTrspcpmtr 19308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pmtr 19309 |
This theorem is referenced by: pmtrdifellem3 19345 pmtrdifellem4 19346 pmtrdifel 19347 pmtrdifwrdellem1 19348 pmtrdifwrdellem2 19349 |
Copyright terms: Public domain | W3C validator |