MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem1 Structured version   Visualization version   GIF version

Theorem pmtrdifellem1 19180
Description: Lemma 1 for pmtrdifel 19184. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem1 (𝑄𝑇𝑆𝑅)

Proof of Theorem pmtrdifellem1
StepHypRef Expression
1 eqid 2736 . . 3 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.t . . 3 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
31, 2pmtrfb 19169 . 2 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o))
4 difsnexi 7673 . . 3 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
5 f1of 6767 . . . 4 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
6 fdm 6660 . . . 4 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
7 difssd 4079 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
8 dmss 5844 . . . . . 6 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
97, 8syl 17 . . . . 5 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
10 difssd 4079 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
11 sseq1 3957 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1210, 11mpbird 256 . . . . 5 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
139, 12sstrd 3942 . . . 4 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
145, 6, 133syl 18 . . 3 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
15 id 22 . . 3 (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o)
16 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
17 eqid 2736 . . . . 5 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
18 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
1917, 18pmtrrn 19161 . . . 4 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∈ 𝑅)
2016, 19eqeltrid 2841 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆𝑅)
214, 14, 15, 20syl3an 1159 . 2 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆𝑅)
223, 21sylbi 216 1 (𝑄𝑇𝑆𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  cdif 3895  wss 3898  {csn 4573   class class class wbr 5092   I cid 5517  dom cdm 5620  ran crn 5621  wf 6475  1-1-ontowf1o 6478  cfv 6479  2oc2o 8361  cen 8801  pmTrspcpmtr 19145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-om 7781  df-1o 8367  df-2o 8368  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-pmtr 19146
This theorem is referenced by:  pmtrdifellem3  19182  pmtrdifellem4  19183  pmtrdifel  19184  pmtrdifwrdellem1  19185  pmtrdifwrdellem2  19186
  Copyright terms: Public domain W3C validator