![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifellem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for pmtrdifel 19270. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem1 | ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
3 | 1, 2 | pmtrfb 19255 | . 2 ⊢ (𝑄 ∈ 𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
4 | difsnexi 7699 | . . 3 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | |
5 | f1of 6788 | . . . 4 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) | |
6 | fdm 6681 | . . . 4 ⊢ (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾})) | |
7 | difssd 4096 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄) | |
8 | dmss 5862 | . . . . . 6 ⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
10 | difssd 4096 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
11 | sseq1 3973 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄 ⊆ 𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | |
12 | 10, 11 | mpbird 257 | . . . . 5 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄 ⊆ 𝑁) |
13 | 9, 12 | sstrd 3958 | . . . 4 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
14 | 5, 6, 13 | 3syl 18 | . . 3 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
15 | id 22 | . . 3 ⊢ (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o) | |
16 | pmtrdifel.0 | . . . 4 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
17 | eqid 2733 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
18 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
19 | 17, 18 | pmtrrn 19247 | . . . 4 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∈ 𝑅) |
20 | 16, 19 | eqeltrid 2838 | . . 3 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆 ∈ 𝑅) |
21 | 4, 14, 15, 20 | syl3an 1161 | . 2 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆 ∈ 𝑅) |
22 | 3, 21 | sylbi 216 | 1 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 {csn 4590 class class class wbr 5109 I cid 5534 dom cdm 5637 ran crn 5638 ⟶wf 6496 –1-1-onto→wf1o 6499 ‘cfv 6500 2oc2o 8410 ≈ cen 8886 pmTrspcpmtr 19231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-om 7807 df-1o 8416 df-2o 8417 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pmtr 19232 |
This theorem is referenced by: pmtrdifellem3 19268 pmtrdifellem4 19269 pmtrdifel 19270 pmtrdifwrdellem1 19271 pmtrdifwrdellem2 19272 |
Copyright terms: Public domain | W3C validator |