Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrdifellem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for pmtrdifel 19184. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem1 | ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
3 | 1, 2 | pmtrfb 19169 | . 2 ⊢ (𝑄 ∈ 𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
4 | difsnexi 7673 | . . 3 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | |
5 | f1of 6767 | . . . 4 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) | |
6 | fdm 6660 | . . . 4 ⊢ (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾})) | |
7 | difssd 4079 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄) | |
8 | dmss 5844 | . . . . . 6 ⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
10 | difssd 4079 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
11 | sseq1 3957 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄 ⊆ 𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | |
12 | 10, 11 | mpbird 256 | . . . . 5 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄 ⊆ 𝑁) |
13 | 9, 12 | sstrd 3942 | . . . 4 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
14 | 5, 6, 13 | 3syl 18 | . . 3 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
15 | id 22 | . . 3 ⊢ (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o) | |
16 | pmtrdifel.0 | . . . 4 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
17 | eqid 2736 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
18 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
19 | 17, 18 | pmtrrn 19161 | . . . 4 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∈ 𝑅) |
20 | 16, 19 | eqeltrid 2841 | . . 3 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆 ∈ 𝑅) |
21 | 4, 14, 15, 20 | syl3an 1159 | . 2 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆 ∈ 𝑅) |
22 | 3, 21 | sylbi 216 | 1 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3895 ⊆ wss 3898 {csn 4573 class class class wbr 5092 I cid 5517 dom cdm 5620 ran crn 5621 ⟶wf 6475 –1-1-onto→wf1o 6478 ‘cfv 6479 2oc2o 8361 ≈ cen 8801 pmTrspcpmtr 19145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-om 7781 df-1o 8367 df-2o 8368 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pmtr 19146 |
This theorem is referenced by: pmtrdifellem3 19182 pmtrdifellem4 19183 pmtrdifel 19184 pmtrdifwrdellem1 19185 pmtrdifwrdellem2 19186 |
Copyright terms: Public domain | W3C validator |