MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem1 Structured version   Visualization version   GIF version

Theorem pmtrdifellem1 19474
Description: Lemma 1 for pmtrdifel 19478. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem1 (𝑄𝑇𝑆𝑅)

Proof of Theorem pmtrdifellem1
StepHypRef Expression
1 eqid 2726 . . 3 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.t . . 3 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
31, 2pmtrfb 19463 . 2 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o))
4 difsnexi 7769 . . 3 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
5 f1of 6843 . . . 4 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
6 fdm 6737 . . . 4 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
7 difssd 4132 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
8 dmss 5909 . . . . . 6 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
97, 8syl 17 . . . . 5 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
10 difssd 4132 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
11 sseq1 4005 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1210, 11mpbird 256 . . . . 5 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
139, 12sstrd 3990 . . . 4 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
145, 6, 133syl 18 . . 3 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
15 id 22 . . 3 (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o)
16 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
17 eqid 2726 . . . . 5 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
18 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
1917, 18pmtrrn 19455 . . . 4 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∈ 𝑅)
2016, 19eqeltrid 2830 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆𝑅)
214, 14, 15, 20syl3an 1157 . 2 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆𝑅)
223, 21sylbi 216 1 (𝑄𝑇𝑆𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3944  wss 3947  {csn 4633   class class class wbr 5153   I cid 5579  dom cdm 5682  ran crn 5683  wf 6550  1-1-ontowf1o 6553  cfv 6554  2oc2o 8490  cen 8971  pmTrspcpmtr 19439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-om 7877  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pmtr 19440
This theorem is referenced by:  pmtrdifellem3  19476  pmtrdifellem4  19477  pmtrdifel  19478  pmtrdifwrdellem1  19479  pmtrdifwrdellem2  19480
  Copyright terms: Public domain W3C validator