MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem1 Structured version   Visualization version   GIF version

Theorem pmtrdifellem1 19509
Description: Lemma 1 for pmtrdifel 19513. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem1 (𝑄𝑇𝑆𝑅)

Proof of Theorem pmtrdifellem1
StepHypRef Expression
1 eqid 2735 . . 3 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.t . . 3 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
31, 2pmtrfb 19498 . 2 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o))
4 difsnexi 7780 . . 3 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
5 f1of 6849 . . . 4 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
6 fdm 6746 . . . 4 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
7 difssd 4147 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
8 dmss 5916 . . . . . 6 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
97, 8syl 17 . . . . 5 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
10 difssd 4147 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
11 sseq1 4021 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1210, 11mpbird 257 . . . . 5 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
139, 12sstrd 4006 . . . 4 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
145, 6, 133syl 18 . . 3 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
15 id 22 . . 3 (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o)
16 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
17 eqid 2735 . . . . 5 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
18 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
1917, 18pmtrrn 19490 . . . 4 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∈ 𝑅)
2016, 19eqeltrid 2843 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆𝑅)
214, 14, 15, 20syl3an 1159 . 2 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → 𝑆𝑅)
223, 21sylbi 217 1 (𝑄𝑇𝑆𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148   I cid 5582  dom cdm 5689  ran crn 5690  wf 6559  1-1-ontowf1o 6562  cfv 6563  2oc2o 8499  cen 8981  pmTrspcpmtr 19474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pmtr 19475
This theorem is referenced by:  pmtrdifellem3  19511  pmtrdifellem4  19512  pmtrdifel  19513  pmtrdifwrdellem1  19514  pmtrdifwrdellem2  19515
  Copyright terms: Public domain W3C validator