MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem2 Structured version   Visualization version   GIF version

Theorem pmtrdifellem2 19458
Description: Lemma 2 for pmtrdifel 19461. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem2 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))

Proof of Theorem pmtrdifellem2
StepHypRef Expression
1 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
21difeq1i 4097 . . 3 (𝑆 ∖ I ) = (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
32dmeqi 5884 . 2 dom (𝑆 ∖ I ) = dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
4 eqid 2735 . . . . 5 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
5 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
64, 5pmtrfb 19446 . . . 4 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o))
7 difsnexi 7755 . . . . 5 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
8 f1of 6818 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
9 fdm 6715 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
10 difssd 4112 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
11 dmss 5882 . . . . . . . 8 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
1210, 11syl 17 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
13 difssd 4112 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
14 sseq1 3984 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1513, 14mpbird 257 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
1612, 15sstrd 3969 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
178, 9, 163syl 18 . . . . 5 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
18 id 22 . . . . 5 (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o)
197, 17, 183anim123i 1151 . . . 4 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o))
206, 19sylbi 217 . . 3 (𝑄𝑇 → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o))
21 eqid 2735 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
2221pmtrmvd 19437 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
2320, 22syl 17 . 2 (𝑄𝑇 → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
243, 23eqtrid 2782 1 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119   I cid 5547  dom cdm 5654  ran crn 5655  wf 6527  1-1-ontowf1o 6530  cfv 6531  2oc2o 8474  cen 8956  pmTrspcpmtr 19422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pmtr 19423
This theorem is referenced by:  pmtrdifellem3  19459  pmtrdifellem4  19460
  Copyright terms: Public domain W3C validator