| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrdifellem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for pmtrdifel 19417. (Contributed by AV, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
| pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
| pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
| Ref | Expression |
|---|---|
| pmtrdifellem2 | ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.0 | . . . 4 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
| 2 | 1 | difeq1i 4088 | . . 3 ⊢ (𝑆 ∖ I ) = (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) |
| 3 | 2 | dmeqi 5871 | . 2 ⊢ dom (𝑆 ∖ I ) = dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) |
| 4 | eqid 2730 | . . . . 5 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 5 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 6 | 4, 5 | pmtrfb 19402 | . . . 4 ⊢ (𝑄 ∈ 𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
| 7 | difsnexi 7740 | . . . . 5 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | |
| 8 | f1of 6803 | . . . . . 6 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) | |
| 9 | fdm 6700 | . . . . . 6 ⊢ (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾})) | |
| 10 | difssd 4103 | . . . . . . . 8 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄) | |
| 11 | dmss 5869 | . . . . . . . 8 ⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
| 13 | difssd 4103 | . . . . . . . 8 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
| 14 | sseq1 3975 | . . . . . . . 8 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄 ⊆ 𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | |
| 15 | 13, 14 | mpbird 257 | . . . . . . 7 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄 ⊆ 𝑁) |
| 16 | 12, 15 | sstrd 3960 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
| 17 | 8, 9, 16 | 3syl 18 | . . . . 5 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
| 18 | id 22 | . . . . 5 ⊢ (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o) | |
| 19 | 7, 17, 18 | 3anim123i 1151 | . . . 4 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
| 20 | 6, 19 | sylbi 217 | . . 3 ⊢ (𝑄 ∈ 𝑇 → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
| 21 | eqid 2730 | . . . 4 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
| 22 | 21 | pmtrmvd 19393 | . . 3 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I )) |
| 23 | 20, 22 | syl 17 | . 2 ⊢ (𝑄 ∈ 𝑇 → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I )) |
| 24 | 3, 23 | eqtrid 2777 | 1 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 class class class wbr 5110 I cid 5535 dom cdm 5641 ran crn 5642 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 2oc2o 8431 ≈ cen 8918 pmTrspcpmtr 19378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pmtr 19379 |
| This theorem is referenced by: pmtrdifellem3 19415 pmtrdifellem4 19416 |
| Copyright terms: Public domain | W3C validator |