| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrdifellem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for pmtrdifel 19392. (Contributed by AV, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
| pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
| pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
| Ref | Expression |
|---|---|
| pmtrdifellem2 | ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.0 | . . . 4 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
| 2 | 1 | difeq1i 4069 | . . 3 ⊢ (𝑆 ∖ I ) = (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) |
| 3 | 2 | dmeqi 5843 | . 2 ⊢ dom (𝑆 ∖ I ) = dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) |
| 4 | eqid 2731 | . . . . 5 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 5 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 6 | 4, 5 | pmtrfb 19377 | . . . 4 ⊢ (𝑄 ∈ 𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
| 7 | difsnexi 7694 | . . . . 5 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | |
| 8 | f1of 6763 | . . . . . 6 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) | |
| 9 | fdm 6660 | . . . . . 6 ⊢ (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾})) | |
| 10 | difssd 4084 | . . . . . . . 8 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄) | |
| 11 | dmss 5841 | . . . . . . . 8 ⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
| 13 | difssd 4084 | . . . . . . . 8 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
| 14 | sseq1 3955 | . . . . . . . 8 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄 ⊆ 𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | |
| 15 | 13, 14 | mpbird 257 | . . . . . . 7 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄 ⊆ 𝑁) |
| 16 | 12, 15 | sstrd 3940 | . . . . . 6 ⊢ (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
| 17 | 8, 9, 16 | 3syl 18 | . . . . 5 ⊢ (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁) |
| 18 | id 22 | . . . . 5 ⊢ (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o) | |
| 19 | 7, 17, 18 | 3anim123i 1151 | . . . 4 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
| 20 | 6, 19 | sylbi 217 | . . 3 ⊢ (𝑄 ∈ 𝑇 → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o)) |
| 21 | eqid 2731 | . . . 4 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
| 22 | 21 | pmtrmvd 19368 | . . 3 ⊢ ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I )) |
| 23 | 20, 22 | syl 17 | . 2 ⊢ (𝑄 ∈ 𝑇 → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I )) |
| 24 | 3, 23 | eqtrid 2778 | 1 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 class class class wbr 5089 I cid 5508 dom cdm 5614 ran crn 5615 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 2oc2o 8379 ≈ cen 8866 pmTrspcpmtr 19353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pmtr 19354 |
| This theorem is referenced by: pmtrdifellem3 19390 pmtrdifellem4 19391 |
| Copyright terms: Public domain | W3C validator |