MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem2 Structured version   Visualization version   GIF version

Theorem pmtrdifellem2 19519
Description: Lemma 2 for pmtrdifel 19522. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem2 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))

Proof of Theorem pmtrdifellem2
StepHypRef Expression
1 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
21difeq1i 4145 . . 3 (𝑆 ∖ I ) = (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
32dmeqi 5929 . 2 dom (𝑆 ∖ I ) = dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
4 eqid 2740 . . . . 5 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
5 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
64, 5pmtrfb 19507 . . . 4 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o))
7 difsnexi 7796 . . . . 5 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
8 f1of 6862 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
9 fdm 6756 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
10 difssd 4160 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
11 dmss 5927 . . . . . . . 8 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
1210, 11syl 17 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
13 difssd 4160 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
14 sseq1 4034 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1513, 14mpbird 257 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
1612, 15sstrd 4019 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
178, 9, 163syl 18 . . . . 5 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
18 id 22 . . . . 5 (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o)
197, 17, 183anim123i 1151 . . . 4 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o))
206, 19sylbi 217 . . 3 (𝑄𝑇 → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o))
21 eqid 2740 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
2221pmtrmvd 19498 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
2320, 22syl 17 . 2 (𝑄𝑇 → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
243, 23eqtrid 2792 1 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166   I cid 5592  dom cdm 5700  ran crn 5701  wf 6569  1-1-ontowf1o 6572  cfv 6573  2oc2o 8516  cen 9000  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pmtr 19484
This theorem is referenced by:  pmtrdifellem3  19520  pmtrdifellem4  19521
  Copyright terms: Public domain W3C validator