MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem2 Structured version   Visualization version   GIF version

Theorem pmtrdifellem2 19407
Description: Lemma 2 for pmtrdifel 19410. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem2 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))

Proof of Theorem pmtrdifellem2
StepHypRef Expression
1 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
21difeq1i 4085 . . 3 (𝑆 ∖ I ) = (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
32dmeqi 5868 . 2 dom (𝑆 ∖ I ) = dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I )
4 eqid 2729 . . . . 5 (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾}))
5 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
64, 5pmtrfb 19395 . . . 4 (𝑄𝑇 ↔ ((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o))
7 difsnexi 7737 . . . . 5 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
8 f1of 6800 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
9 fdm 6697 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → dom 𝑄 = (𝑁 ∖ {𝐾}))
10 difssd 4100 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑄 ∖ I ) ⊆ 𝑄)
11 dmss 5866 . . . . . . . 8 ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
1210, 11syl 17 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ dom 𝑄)
13 difssd 4100 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
14 sseq1 3972 . . . . . . . 8 (dom 𝑄 = (𝑁 ∖ {𝐾}) → (dom 𝑄𝑁 ↔ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
1513, 14mpbird 257 . . . . . . 7 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom 𝑄𝑁)
1612, 15sstrd 3957 . . . . . 6 (dom 𝑄 = (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
178, 9, 163syl 18 . . . . 5 (𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) ⊆ 𝑁)
18 id 22 . . . . 5 (dom (𝑄 ∖ I ) ≈ 2o → dom (𝑄 ∖ I ) ≈ 2o)
197, 17, 183anim123i 1151 . . . 4 (((𝑁 ∖ {𝐾}) ∈ V ∧ 𝑄:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ∧ dom (𝑄 ∖ I ) ≈ 2o) → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o))
206, 19sylbi 217 . . 3 (𝑄𝑇 → (𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o))
21 eqid 2729 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
2221pmtrmvd 19386 . . 3 ((𝑁 ∈ V ∧ dom (𝑄 ∖ I ) ⊆ 𝑁 ∧ dom (𝑄 ∖ I ) ≈ 2o) → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
2320, 22syl 17 . 2 (𝑄𝑇 → dom (((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ∖ I ) = dom (𝑄 ∖ I ))
243, 23eqtrid 2776 1 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107   I cid 5532  dom cdm 5638  ran crn 5639  wf 6507  1-1-ontowf1o 6510  cfv 6511  2oc2o 8428  cen 8915  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pmtr 19372
This theorem is referenced by:  pmtrdifellem3  19408  pmtrdifellem4  19409
  Copyright terms: Public domain W3C validator