Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xp Structured version   Visualization version   GIF version

Theorem sge0xp 43068
Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xp.1 𝑘𝜑
sge0xp.z (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
sge0xp.a (𝜑𝐴𝑉)
sge0xp.b (𝜑𝐵𝑊)
sge0xp.d ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xp (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑗,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐷(𝑧)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧,𝑗,𝑘)

Proof of Theorem sge0xp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 sge0xp.a . . 3 (𝜑𝐴𝑉)
2 snex 5297 . . . . . 6 {𝑗} ∈ V
32a1i 11 . . . . 5 (𝜑 → {𝑗} ∈ V)
4 sge0xp.b . . . . 5 (𝜑𝐵𝑊)
53, 4xpexd 7454 . . . 4 (𝜑 → ({𝑗} × 𝐵) ∈ V)
65adantr 484 . . 3 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
7 disjsnxp 41704 . . . 4 Disj 𝑗𝐴 ({𝑗} × 𝐵)
87a1i 11 . . 3 (𝜑Disj 𝑗𝐴 ({𝑗} × 𝐵))
9 vex 3444 . . . . . . . 8 𝑗 ∈ V
10 elsnxp 6110 . . . . . . . 8 (𝑗 ∈ V → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
119, 10ax-mp 5 . . . . . . 7 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1211biimpi 219 . . . . . 6 (𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1312adantl 485 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
14 sge0xp.1 . . . . . . . 8 𝑘𝜑
15 nfv 1915 . . . . . . . 8 𝑘 𝑗𝐴
1614, 15nfan 1900 . . . . . . 7 𝑘(𝜑𝑗𝐴)
17 nfv 1915 . . . . . . 7 𝑘 𝑧 ∈ ({𝑗} × 𝐵)
1816, 17nfan 1900 . . . . . 6 𝑘((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
19 nfv 1915 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
20 sge0xp.z . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
21203ad2ant3 1132 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 = 𝐶)
22 sge0xp.d . . . . . . . . . . 11 ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223expa 1115 . . . . . . . . . 10 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
24233adant3 1129 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
2521, 24eqeltrd 2890 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 ∈ (0[,]+∞))
26253exp 1116 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2726adantr 484 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2818, 19, 27rexlimd 3276 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞)))
2913, 28mpd 15 . . . 4 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
30293impa 1107 . . 3 ((𝜑𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
311, 6, 8, 30sge0iunmpt 43057 . 2 (𝜑 → (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
32 iunxpconst 5588 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵)
3332eqcomi 2807 . . . . 5 (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵)
3433a1i 11 . . . 4 (𝜑 → (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
3534mpteq1d 5119 . . 3 (𝜑 → (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷) = (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷))
3635fveq2d 6649 . 2 (𝜑 → (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)))
37 nfv 1915 . . . 4 𝑗𝜑
38 nfv 1915 . . . . . 6 𝑧(𝜑𝑗𝐴)
394adantr 484 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵𝑊)
40 simpr 488 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑗𝐴)
41 eqid 2798 . . . . . . 7 (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)
4240, 41projf1o 41825 . . . . . 6 ((𝜑𝑗𝐴) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩):𝐵1-1-onto→({𝑗} × 𝐵))
43 eqidd 2799 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩))
44 opeq2 4765 . . . . . . . . 9 (𝑖 = 𝑘 → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
4544adantl 485 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑖 = 𝑘) → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
46 simpr 488 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝑘𝐵)
47 opex 5321 . . . . . . . . 9 𝑗, 𝑘⟩ ∈ V
4847a1i 11 . . . . . . . 8 ((𝜑𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ V)
4943, 45, 46, 48fvmptd 6752 . . . . . . 7 ((𝜑𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5049adantlr 714 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5138, 16, 20, 39, 42, 50, 29sge0f1o 43021 . . . . 5 ((𝜑𝑗𝐴) → (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑘𝐵𝐶)))
5251eqcomd 2804 . . . 4 ((𝜑𝑗𝐴) → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))
5337, 52mpteq2da 5124 . . 3 (𝜑 → (𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))
5453fveq2d 6649 . 2 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
5531, 36, 543eqtr4rd 2844 1 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wrex 3107  Vcvv 3441  {csn 4525  cop 4531   ciun 4881  Disj wdisj 4995  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  [,]cicc 12729  Σ^csumge0 43001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-sumge0 43002
This theorem is referenced by:  ovnsubaddlem1  43209
  Copyright terms: Public domain W3C validator