Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xp Structured version   Visualization version   GIF version

Theorem sge0xp 45132
Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xp.1 𝑘𝜑
sge0xp.z (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
sge0xp.a (𝜑𝐴𝑉)
sge0xp.b (𝜑𝐵𝑊)
sge0xp.d ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xp (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑗,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐷(𝑧)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧,𝑗,𝑘)

Proof of Theorem sge0xp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 sge0xp.a . . 3 (𝜑𝐴𝑉)
2 vsnex 5429 . . . . . 6 {𝑗} ∈ V
32a1i 11 . . . . 5 (𝜑 → {𝑗} ∈ V)
4 sge0xp.b . . . . 5 (𝜑𝐵𝑊)
53, 4xpexd 7735 . . . 4 (𝜑 → ({𝑗} × 𝐵) ∈ V)
65adantr 482 . . 3 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
7 disjsnxp 43743 . . . 4 Disj 𝑗𝐴 ({𝑗} × 𝐵)
87a1i 11 . . 3 (𝜑Disj 𝑗𝐴 ({𝑗} × 𝐵))
9 vex 3479 . . . . . . . 8 𝑗 ∈ V
10 elsnxp 6288 . . . . . . . 8 (𝑗 ∈ V → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
119, 10ax-mp 5 . . . . . . 7 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1211biimpi 215 . . . . . 6 (𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1312adantl 483 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
14 sge0xp.1 . . . . . . . 8 𝑘𝜑
15 nfv 1918 . . . . . . . 8 𝑘 𝑗𝐴
1614, 15nfan 1903 . . . . . . 7 𝑘(𝜑𝑗𝐴)
17 nfv 1918 . . . . . . 7 𝑘 𝑧 ∈ ({𝑗} × 𝐵)
1816, 17nfan 1903 . . . . . 6 𝑘((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
19 nfv 1918 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
20 sge0xp.z . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
21203ad2ant3 1136 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 = 𝐶)
22 sge0xp.d . . . . . . . . . . 11 ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223expa 1119 . . . . . . . . . 10 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
24233adant3 1133 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
2521, 24eqeltrd 2834 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 ∈ (0[,]+∞))
26253exp 1120 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2726adantr 482 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2818, 19, 27rexlimd 3264 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞)))
2913, 28mpd 15 . . . 4 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
30293impa 1111 . . 3 ((𝜑𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
311, 6, 8, 30sge0iunmpt 45121 . 2 (𝜑 → (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
32 iunxpconst 5747 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵)
3332eqcomi 2742 . . . . 5 (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵)
3433a1i 11 . . . 4 (𝜑 → (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
3534mpteq1d 5243 . . 3 (𝜑 → (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷) = (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷))
3635fveq2d 6893 . 2 (𝜑 → (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)))
37 nfv 1918 . . . 4 𝑗𝜑
38 nfv 1918 . . . . . 6 𝑧(𝜑𝑗𝐴)
394adantr 482 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵𝑊)
40 simpr 486 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑗𝐴)
41 eqid 2733 . . . . . . 7 (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)
4240, 41projf1o 43882 . . . . . 6 ((𝜑𝑗𝐴) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩):𝐵1-1-onto→({𝑗} × 𝐵))
43 eqidd 2734 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩))
44 opeq2 4874 . . . . . . . . 9 (𝑖 = 𝑘 → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
4544adantl 483 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑖 = 𝑘) → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
46 simpr 486 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝑘𝐵)
47 opex 5464 . . . . . . . . 9 𝑗, 𝑘⟩ ∈ V
4847a1i 11 . . . . . . . 8 ((𝜑𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ V)
4943, 45, 46, 48fvmptd 7003 . . . . . . 7 ((𝜑𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5049adantlr 714 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5138, 16, 20, 39, 42, 50, 29sge0f1o 45085 . . . . 5 ((𝜑𝑗𝐴) → (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑘𝐵𝐶)))
5251eqcomd 2739 . . . 4 ((𝜑𝑗𝐴) → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))
5337, 52mpteq2da 5246 . . 3 (𝜑 → (𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))
5453fveq2d 6893 . 2 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
5531, 36, 543eqtr4rd 2784 1 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wrex 3071  Vcvv 3475  {csn 4628  cop 4634   ciun 4997  Disj wdisj 5113  cmpt 5231   × cxp 5674  cfv 6541  (class class class)co 7406  0cc0 11107  +∞cpnf 11242  [,]cicc 13324  Σ^csumge0 45065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-ac2 10455  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-oi 9502  df-card 9931  df-acn 9934  df-ac 10108  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-xadd 13090  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-sumge0 45066
This theorem is referenced by:  ovnsubaddlem1  45273
  Copyright terms: Public domain W3C validator