Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xp Structured version   Visualization version   GIF version

Theorem sge0xp 46411
Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xp.1 𝑘𝜑
sge0xp.z (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
sge0xp.a (𝜑𝐴𝑉)
sge0xp.b (𝜑𝐵𝑊)
sge0xp.d ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xp (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑗,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐷(𝑧)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧,𝑗,𝑘)

Proof of Theorem sge0xp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 sge0xp.a . . 3 (𝜑𝐴𝑉)
2 vsnex 5376 . . . . . 6 {𝑗} ∈ V
32a1i 11 . . . . 5 (𝜑 → {𝑗} ∈ V)
4 sge0xp.b . . . . 5 (𝜑𝐵𝑊)
53, 4xpexd 7691 . . . 4 (𝜑 → ({𝑗} × 𝐵) ∈ V)
65adantr 480 . . 3 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
7 disjsnxp 45048 . . . 4 Disj 𝑗𝐴 ({𝑗} × 𝐵)
87a1i 11 . . 3 (𝜑Disj 𝑗𝐴 ({𝑗} × 𝐵))
9 vex 3442 . . . . . . . 8 𝑗 ∈ V
10 elsnxp 6243 . . . . . . . 8 (𝑗 ∈ V → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
119, 10ax-mp 5 . . . . . . 7 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1211biimpi 216 . . . . . 6 (𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1312adantl 481 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
14 sge0xp.1 . . . . . . . 8 𝑘𝜑
15 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐴
1614, 15nfan 1899 . . . . . . 7 𝑘(𝜑𝑗𝐴)
17 nfv 1914 . . . . . . 7 𝑘 𝑧 ∈ ({𝑗} × 𝐵)
1816, 17nfan 1899 . . . . . 6 𝑘((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
19 nfv 1914 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
20 sge0xp.z . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
21203ad2ant3 1135 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 = 𝐶)
22 sge0xp.d . . . . . . . . . . 11 ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223expa 1118 . . . . . . . . . 10 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
24233adant3 1132 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
2521, 24eqeltrd 2828 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 ∈ (0[,]+∞))
26253exp 1119 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2726adantr 480 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2818, 19, 27rexlimd 3236 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞)))
2913, 28mpd 15 . . . 4 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
30293impa 1109 . . 3 ((𝜑𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
311, 6, 8, 30sge0iunmpt 46400 . 2 (𝜑 → (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
32 iunxpconst 5696 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵)
3332eqcomi 2738 . . . . 5 (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵)
3433a1i 11 . . . 4 (𝜑 → (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
3534mpteq1d 5185 . . 3 (𝜑 → (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷) = (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷))
3635fveq2d 6830 . 2 (𝜑 → (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)))
37 nfv 1914 . . . 4 𝑗𝜑
38 nfv 1914 . . . . . 6 𝑧(𝜑𝑗𝐴)
394adantr 480 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵𝑊)
40 simpr 484 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑗𝐴)
41 eqid 2729 . . . . . . 7 (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)
4240, 41projf1o 45175 . . . . . 6 ((𝜑𝑗𝐴) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩):𝐵1-1-onto→({𝑗} × 𝐵))
43 eqidd 2730 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩))
44 opeq2 4828 . . . . . . . . 9 (𝑖 = 𝑘 → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
4544adantl 481 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑖 = 𝑘) → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
46 simpr 484 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝑘𝐵)
47 opex 5411 . . . . . . . . 9 𝑗, 𝑘⟩ ∈ V
4847a1i 11 . . . . . . . 8 ((𝜑𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ V)
4943, 45, 46, 48fvmptd 6941 . . . . . . 7 ((𝜑𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5049adantlr 715 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5138, 16, 20, 39, 42, 50, 29sge0f1o 46364 . . . . 5 ((𝜑𝑗𝐴) → (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑘𝐵𝐶)))
5251eqcomd 2735 . . . 4 ((𝜑𝑗𝐴) → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))
5337, 52mpteq2da 5187 . . 3 (𝜑 → (𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))
5453fveq2d 6830 . 2 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
5531, 36, 543eqtr4rd 2775 1 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wrex 3053  Vcvv 3438  {csn 4579  cop 4585   ciun 4944  Disj wdisj 5062  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  0cc0 11028  +∞cpnf 11165  [,]cicc 13269  Σ^csumge0 46344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-sumge0 46345
This theorem is referenced by:  ovnsubaddlem1  46552
  Copyright terms: Public domain W3C validator