Step | Hyp | Ref
| Expression |
1 | | sge0xp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | snex 5349 |
. . . . . 6
⊢ {𝑗} ∈ V |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑗} ∈ V) |
4 | | sge0xp.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
5 | 3, 4 | xpexd 7579 |
. . . 4
⊢ (𝜑 → ({𝑗} × 𝐵) ∈ V) |
6 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ({𝑗} × 𝐵) ∈ V) |
7 | | disjsnxp 42507 |
. . . 4
⊢
Disj 𝑗 ∈
𝐴 ({𝑗} × 𝐵) |
8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
9 | | vex 3426 |
. . . . . . . 8
⊢ 𝑗 ∈ V |
10 | | elsnxp 6183 |
. . . . . . . 8
⊢ (𝑗 ∈ V → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉)) |
11 | 9, 10 | ax-mp 5 |
. . . . . . 7
⊢ (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
12 | 11 | biimpi 215 |
. . . . . 6
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
13 | 12 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
14 | | sge0xp.1 |
. . . . . . . 8
⊢
Ⅎ𝑘𝜑 |
15 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 |
16 | 14, 15 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
17 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑧 ∈ ({𝑗} × 𝐵) |
18 | 16, 17 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) |
19 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝐷 ∈
(0[,]+∞) |
20 | | sge0xp.z |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) |
21 | 20 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵 ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐷 = 𝐶) |
22 | | sge0xp.d |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
23 | 22 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
24 | 23 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵 ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐶 ∈ (0[,]+∞)) |
25 | 21, 24 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵 ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐷 ∈ (0[,]+∞)) |
26 | 25 | 3exp 1117 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ 𝐵 → (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 ∈ (0[,]+∞)))) |
27 | 26 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑘 ∈ 𝐵 → (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 ∈ (0[,]+∞)))) |
28 | 18, 19, 27 | rexlimd 3245 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉 → 𝐷 ∈ (0[,]+∞))) |
29 | 13, 28 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞)) |
30 | 29 | 3impa 1108 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞)) |
31 | 1, 6, 8, 30 | sge0iunmpt 43846 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) =
(Σ^‘(𝑗 ∈ 𝐴 ↦
(Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))) |
32 | | iunxpconst 5650 |
. . . . . 6
⊢ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵) |
33 | 32 | eqcomi 2747 |
. . . . 5
⊢ (𝐴 × 𝐵) = ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
34 | 33 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐵) = ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
35 | 34 | mpteq1d 5165 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷) = (𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) |
36 | 35 | fveq2d 6760 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)) =
(Σ^‘(𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↦ 𝐷))) |
37 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
38 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑧(𝜑 ∧ 𝑗 ∈ 𝐴) |
39 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
40 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) |
41 | | eqid 2738 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉) = (𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉) |
42 | 40, 41 | projf1o 42625 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉):𝐵–1-1-onto→({𝑗} × 𝐵)) |
43 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉) = (𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉)) |
44 | | opeq2 4802 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → 〈𝑗, 𝑖〉 = 〈𝑗, 𝑘〉) |
45 | 44 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑖 = 𝑘) → 〈𝑗, 𝑖〉 = 〈𝑗, 𝑘〉) |
46 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
47 | | opex 5373 |
. . . . . . . . 9
⊢
〈𝑗, 𝑘〉 ∈ V |
48 | 47 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 〈𝑗, 𝑘〉 ∈ V) |
49 | 43, 45, 46, 48 | fvmptd 6864 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉)‘𝑘) = 〈𝑗, 𝑘〉) |
50 | 49 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ 〈𝑗, 𝑖〉)‘𝑘) = 〈𝑗, 𝑘〉) |
51 | 38, 16, 20, 39, 42, 50, 29 | sge0f1o 43810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) →
(Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)) =
(Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
52 | 51 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) →
(Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) =
(Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))) |
53 | 37, 52 | mpteq2da 5168 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦
(Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) = (𝑗 ∈ 𝐴 ↦
(Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))) |
54 | 53 | fveq2d 6760 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝐴 ↦
(Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) =
(Σ^‘(𝑗 ∈ 𝐴 ↦
(Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))) |
55 | 31, 36, 54 | 3eqtr4rd 2789 |
1
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝐴 ↦
(Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) =
(Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷))) |