Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xp Structured version   Visualization version   GIF version

Theorem sge0xp 46434
Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xp.1 𝑘𝜑
sge0xp.z (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
sge0xp.a (𝜑𝐴𝑉)
sge0xp.b (𝜑𝐵𝑊)
sge0xp.d ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xp (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑗,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐷(𝑧)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧,𝑗,𝑘)

Proof of Theorem sge0xp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 sge0xp.a . . 3 (𝜑𝐴𝑉)
2 vsnex 5392 . . . . . 6 {𝑗} ∈ V
32a1i 11 . . . . 5 (𝜑 → {𝑗} ∈ V)
4 sge0xp.b . . . . 5 (𝜑𝐵𝑊)
53, 4xpexd 7730 . . . 4 (𝜑 → ({𝑗} × 𝐵) ∈ V)
65adantr 480 . . 3 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
7 disjsnxp 45071 . . . 4 Disj 𝑗𝐴 ({𝑗} × 𝐵)
87a1i 11 . . 3 (𝜑Disj 𝑗𝐴 ({𝑗} × 𝐵))
9 vex 3454 . . . . . . . 8 𝑗 ∈ V
10 elsnxp 6267 . . . . . . . 8 (𝑗 ∈ V → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
119, 10ax-mp 5 . . . . . . 7 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1211biimpi 216 . . . . . 6 (𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1312adantl 481 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
14 sge0xp.1 . . . . . . . 8 𝑘𝜑
15 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐴
1614, 15nfan 1899 . . . . . . 7 𝑘(𝜑𝑗𝐴)
17 nfv 1914 . . . . . . 7 𝑘 𝑧 ∈ ({𝑗} × 𝐵)
1816, 17nfan 1899 . . . . . 6 𝑘((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
19 nfv 1914 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
20 sge0xp.z . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
21203ad2ant3 1135 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 = 𝐶)
22 sge0xp.d . . . . . . . . . . 11 ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223expa 1118 . . . . . . . . . 10 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
24233adant3 1132 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
2521, 24eqeltrd 2829 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 ∈ (0[,]+∞))
26253exp 1119 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2726adantr 480 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2818, 19, 27rexlimd 3245 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞)))
2913, 28mpd 15 . . . 4 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
30293impa 1109 . . 3 ((𝜑𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
311, 6, 8, 30sge0iunmpt 46423 . 2 (𝜑 → (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
32 iunxpconst 5714 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵)
3332eqcomi 2739 . . . . 5 (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵)
3433a1i 11 . . . 4 (𝜑 → (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
3534mpteq1d 5200 . . 3 (𝜑 → (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷) = (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷))
3635fveq2d 6865 . 2 (𝜑 → (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)))
37 nfv 1914 . . . 4 𝑗𝜑
38 nfv 1914 . . . . . 6 𝑧(𝜑𝑗𝐴)
394adantr 480 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵𝑊)
40 simpr 484 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑗𝐴)
41 eqid 2730 . . . . . . 7 (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)
4240, 41projf1o 45198 . . . . . 6 ((𝜑𝑗𝐴) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩):𝐵1-1-onto→({𝑗} × 𝐵))
43 eqidd 2731 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩))
44 opeq2 4841 . . . . . . . . 9 (𝑖 = 𝑘 → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
4544adantl 481 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑖 = 𝑘) → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
46 simpr 484 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝑘𝐵)
47 opex 5427 . . . . . . . . 9 𝑗, 𝑘⟩ ∈ V
4847a1i 11 . . . . . . . 8 ((𝜑𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ V)
4943, 45, 46, 48fvmptd 6978 . . . . . . 7 ((𝜑𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5049adantlr 715 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5138, 16, 20, 39, 42, 50, 29sge0f1o 46387 . . . . 5 ((𝜑𝑗𝐴) → (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑘𝐵𝐶)))
5251eqcomd 2736 . . . 4 ((𝜑𝑗𝐴) → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))
5337, 52mpteq2da 5202 . . 3 (𝜑 → (𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))
5453fveq2d 6865 . 2 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
5531, 36, 543eqtr4rd 2776 1 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wrex 3054  Vcvv 3450  {csn 4592  cop 4598   ciun 4958  Disj wdisj 5077  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  [,]cicc 13316  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368
This theorem is referenced by:  ovnsubaddlem1  46575
  Copyright terms: Public domain W3C validator