Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmecd Structured version   Visualization version   GIF version

Theorem dmecd 38415
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8684). (Contributed by Peter Mazsa, 9-Oct-2018.)
Hypotheses
Ref Expression
dmecd.1 (𝜑 → dom 𝑅 = 𝐴)
dmecd.2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmecd (𝜑 → (𝐵𝐴𝐶𝐴))

Proof of Theorem dmecd
StepHypRef Expression
1 dmecd.2 . . . 4 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
21neeq1d 2988 . . 3 (𝜑 → ([𝐵]𝑅 ≠ ∅ ↔ [𝐶]𝑅 ≠ ∅))
3 ecdmn0 8683 . . 3 (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅)
4 ecdmn0 8683 . . 3 (𝐶 ∈ dom 𝑅 ↔ [𝐶]𝑅 ≠ ∅)
52, 3, 43bitr4g 314 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
6 dmecd.1 . . 3 (𝜑 → dom 𝑅 = 𝐴)
76eleq2d 2819 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐵𝐴))
86eleq2d 2819 . 2 (𝜑 → (𝐶 ∈ dom 𝑅𝐶𝐴))
95, 7, 83bitr3d 309 1 (𝜑 → (𝐵𝐴𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wne 2929  c0 4282  dom cdm 5621  [cec 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633
This theorem is referenced by:  dmec2d  38416
  Copyright terms: Public domain W3C validator