![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmecd | Structured version Visualization version GIF version |
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8793). (Contributed by Peter Mazsa, 9-Oct-2018.) |
Ref | Expression |
---|---|
dmecd.1 | ⊢ (𝜑 → dom 𝑅 = 𝐴) |
dmecd.2 | ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) |
Ref | Expression |
---|---|
dmecd | ⊢ (𝜑 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmecd.2 | . . . 4 ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) | |
2 | 1 | neeq1d 2997 | . . 3 ⊢ (𝜑 → ([𝐵]𝑅 ≠ ∅ ↔ [𝐶]𝑅 ≠ ∅)) |
3 | ecdmn0 8792 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅) | |
4 | ecdmn0 8792 | . . 3 ⊢ (𝐶 ∈ dom 𝑅 ↔ [𝐶]𝑅 ≠ ∅) | |
5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
6 | dmecd.1 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐴) | |
7 | 6 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝐴)) |
8 | 6 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐶 ∈ dom 𝑅 ↔ 𝐶 ∈ 𝐴)) |
9 | 5, 7, 8 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 dom cdm 5688 [cec 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ec 8745 |
This theorem is referenced by: dmec2d 38286 |
Copyright terms: Public domain | W3C validator |