Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmecd Structured version   Visualization version   GIF version

Theorem dmecd 37168
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8750). (Contributed by Peter Mazsa, 9-Oct-2018.)
Hypotheses
Ref Expression
dmecd.1 (𝜑 → dom 𝑅 = 𝐴)
dmecd.2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmecd (𝜑 → (𝐵𝐴𝐶𝐴))

Proof of Theorem dmecd
StepHypRef Expression
1 dmecd.2 . . . 4 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
21neeq1d 3000 . . 3 (𝜑 → ([𝐵]𝑅 ≠ ∅ ↔ [𝐶]𝑅 ≠ ∅))
3 ecdmn0 8749 . . 3 (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅)
4 ecdmn0 8749 . . 3 (𝐶 ∈ dom 𝑅 ↔ [𝐶]𝑅 ≠ ∅)
52, 3, 43bitr4g 313 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
6 dmecd.1 . . 3 (𝜑 → dom 𝑅 = 𝐴)
76eleq2d 2819 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐵𝐴))
86eleq2d 2819 . 2 (𝜑 → (𝐶 ∈ dom 𝑅𝐶𝐴))
95, 7, 83bitr3d 308 1 (𝜑 → (𝐵𝐴𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wne 2940  c0 4322  dom cdm 5676  [cec 8700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8704
This theorem is referenced by:  dmec2d  37169
  Copyright terms: Public domain W3C validator