MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmuni Structured version   Visualization version   GIF version

Theorem dmuni 5861
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
Assertion
Ref Expression
dmuni dom 𝐴 = 𝑥𝐴 dom 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2167 . . . . 5 (∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
2 ancom 460 . . . . . . 7 ((∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (𝑥𝐴 ∧ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥))
3 19.41v 1950 . . . . . . 7 (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
4 vex 3442 . . . . . . . . 9 𝑦 ∈ V
54eldm2 5848 . . . . . . . 8 (𝑦 ∈ dom 𝑥 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥)
65anbi2i 623 . . . . . . 7 ((𝑥𝐴𝑦 ∈ dom 𝑥) ↔ (𝑥𝐴 ∧ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥))
72, 3, 63bitr4i 303 . . . . . 6 (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (𝑥𝐴𝑦 ∈ dom 𝑥))
87exbii 1849 . . . . 5 (∃𝑥𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
91, 8bitri 275 . . . 4 (∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
10 eluni 4863 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
1110exbii 1849 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
12 df-rex 3059 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
139, 11, 123bitr4i 303 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝑥)
144eldm2 5848 . . 3 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴)
15 eliun 4947 . . 3 (𝑦 𝑥𝐴 dom 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝑥)
1613, 14, 153bitr4i 303 . 2 (𝑦 ∈ dom 𝐴𝑦 𝑥𝐴 dom 𝑥)
1716eqriv 2730 1 dom 𝐴 = 𝑥𝐴 dom 𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3058  cop 4583   cuni 4860   ciun 4943  dom cdm 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-dm 5631
This theorem is referenced by:  frrlem7  8231  tfrlem8  8312  axdc3lem2  10352  bnj1400  34858
  Copyright terms: Public domain W3C validator