![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmuni | Structured version Visualization version GIF version |
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
Ref | Expression |
---|---|
dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 2131 | . . . . 5 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | ancom 461 | . . . . . . 7 ⊢ ((∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) | |
3 | 19.41v 1925 | . . . . . . 7 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
4 | vex 3435 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | 4 | eldm2 5648 | . . . . . . . 8 ⊢ (𝑦 ∈ dom 𝑥 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥) |
6 | 5 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) |
7 | 2, 3, 6 | 3bitr4i 304 | . . . . . 6 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
8 | 7 | exbii 1827 | . . . . 5 ⊢ (∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
9 | 1, 8 | bitri 276 | . . . 4 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
10 | eluni 4742 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
11 | 10 | exbii 1827 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
12 | df-rex 3109 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) | |
13 | 9, 11, 12 | 3bitr4i 304 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) |
14 | 4 | eldm2 5648 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴) |
15 | eliun 4823 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) | |
16 | 13, 14, 15 | 3bitr4i 304 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥) |
17 | 16 | eqriv 2790 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1520 ∃wex 1759 ∈ wcel 2079 ∃wrex 3104 〈cop 4472 ∪ cuni 4739 ∪ ciun 4819 dom cdm 5435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-dm 5445 |
This theorem is referenced by: wfrdmss 7804 wfrdmcl 7806 tfrlem8 7863 axdc3lem2 9708 bnj1400 31680 frrlem7 32683 |
Copyright terms: Public domain | W3C validator |