![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmuni | Structured version Visualization version GIF version |
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
Ref | Expression |
---|---|
dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 2163 | . . . . 5 ⊢ (∃𝑧∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | ancom 462 | . . . . . . 7 ⊢ ((∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥)) | |
3 | 19.41v 1954 | . . . . . . 7 ⊢ (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
4 | vex 3448 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | 4 | eldm2 5858 | . . . . . . . 8 ⊢ (𝑦 ∈ dom 𝑥 ↔ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥) |
6 | 5 | anbi2i 624 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥)) |
7 | 2, 3, 6 | 3bitr4i 303 | . . . . . 6 ⊢ (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
8 | 7 | exbii 1851 | . . . . 5 ⊢ (∃𝑥∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
9 | 1, 8 | bitri 275 | . . . 4 ⊢ (∃𝑧∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
10 | eluni 4869 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴 ↔ ∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
11 | 10 | exbii 1851 | . . . 4 ⊢ (∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴 ↔ ∃𝑧∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
12 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) | |
13 | 9, 11, 12 | 3bitr4i 303 | . . 3 ⊢ (∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) |
14 | 4 | eldm2 5858 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ ∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴) |
15 | eliun 4959 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) | |
16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥) |
17 | 16 | eqriv 2730 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃wrex 3070 ⟨cop 4593 ∪ cuni 4866 ∪ ciun 4955 dom cdm 5634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-dm 5644 |
This theorem is referenced by: frrlem7 8224 wfrdmssOLD 8262 wfrdmclOLD 8264 tfrlem8 8331 axdc3lem2 10392 bnj1400 33504 |
Copyright terms: Public domain | W3C validator |