![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxpOLD | Structured version Visualization version GIF version |
Description: Obsolete version of dmxp 5953 as of 19-Dec-2024. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmxpOLD | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5706 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | 1 | dmeqi 5929 | . 2 ⊢ dom (𝐴 × 𝐵) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
3 | n0 4376 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
4 | 3 | biimpi 216 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐵) |
5 | 4 | ralrimivw 3156 | . . 3 ⊢ (𝐵 ≠ ∅ → ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵) |
6 | dmopab3 5944 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) | |
7 | 5, 6 | sylib 218 | . 2 ⊢ (𝐵 ≠ ∅ → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) |
8 | 2, 7 | eqtrid 2792 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 {copab 5228 × cxp 5698 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |