MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxpOLD Structured version   Visualization version   GIF version

Theorem dmxpOLD 5954
Description: Obsolete version of dmxp 5953 as of 19-Dec-2024. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dmxpOLD (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)

Proof of Theorem dmxpOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5706 . . 3 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
21dmeqi 5929 . 2 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
3 n0 4376 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
43biimpi 216 . . . 4 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
54ralrimivw 3156 . . 3 (𝐵 ≠ ∅ → ∀𝑦𝐴𝑥 𝑥𝐵)
6 dmopab3 5944 . . 3 (∀𝑦𝐴𝑥 𝑥𝐵 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = 𝐴)
75, 6sylib 218 . 2 (𝐵 ≠ ∅ → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = 𝐴)
82, 7eqtrid 2792 1 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  c0 4352  {copab 5228   × cxp 5698  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator