Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddcbv Structured version   Visualization version   GIF version

Theorem dvhvaddcbv 41072
Description: Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.)
Hypothesis
Ref Expression
dvhvaddval.a + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
Assertion
Ref Expression
dvhvaddcbv + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑖,𝐸   ,𝑓,𝑔,,𝑖   𝑇,𝑓,𝑔,,𝑖
Allowed substitution hints:   + (𝑓,𝑔,,𝑖)

Proof of Theorem dvhvaddcbv
StepHypRef Expression
1 dvhvaddval.a . 2 + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
2 fveq2 6907 . . . . 5 (𝑓 = → (1st𝑓) = (1st))
32coeq1d 5875 . . . 4 (𝑓 = → ((1st𝑓) ∘ (1st𝑔)) = ((1st) ∘ (1st𝑔)))
4 fveq2 6907 . . . . 5 (𝑓 = → (2nd𝑓) = (2nd))
54oveq1d 7446 . . . 4 (𝑓 = → ((2nd𝑓) (2nd𝑔)) = ((2nd) (2nd𝑔)))
63, 5opeq12d 4886 . . 3 (𝑓 = → ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩ = ⟨((1st) ∘ (1st𝑔)), ((2nd) (2nd𝑔))⟩)
7 fveq2 6907 . . . . 5 (𝑔 = 𝑖 → (1st𝑔) = (1st𝑖))
87coeq2d 5876 . . . 4 (𝑔 = 𝑖 → ((1st) ∘ (1st𝑔)) = ((1st) ∘ (1st𝑖)))
9 fveq2 6907 . . . . 5 (𝑔 = 𝑖 → (2nd𝑔) = (2nd𝑖))
109oveq2d 7447 . . . 4 (𝑔 = 𝑖 → ((2nd) (2nd𝑔)) = ((2nd) (2nd𝑖)))
118, 10opeq12d 4886 . . 3 (𝑔 = 𝑖 → ⟨((1st) ∘ (1st𝑔)), ((2nd) (2nd𝑔))⟩ = ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
126, 11cbvmpov 7528 . 2 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩) = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
131, 12eqtri 2763 1 + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cop 4637   × cxp 5687  ccom 5693  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-co 5698  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  dvhvaddval  41073
  Copyright terms: Public domain W3C validator