| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcbv | Structured version Visualization version GIF version | ||
| Description: Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| dvhvaddval.a | ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) |
| Ref | Expression |
|---|---|
| dvhvaddcbv | ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvhvaddval.a | . 2 ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
| 2 | fveq2 6887 | . . . . 5 ⊢ (𝑓 = ℎ → (1st ‘𝑓) = (1st ‘ℎ)) | |
| 3 | 2 | coeq1d 5854 | . . . 4 ⊢ (𝑓 = ℎ → ((1st ‘𝑓) ∘ (1st ‘𝑔)) = ((1st ‘ℎ) ∘ (1st ‘𝑔))) |
| 4 | fveq2 6887 | . . . . 5 ⊢ (𝑓 = ℎ → (2nd ‘𝑓) = (2nd ‘ℎ)) | |
| 5 | 4 | oveq1d 7429 | . . . 4 ⊢ (𝑓 = ℎ → ((2nd ‘𝑓) ⨣ (2nd ‘𝑔)) = ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))) |
| 6 | 3, 5 | opeq12d 4863 | . . 3 ⊢ (𝑓 = ℎ → 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉 = 〈((1st ‘ℎ) ∘ (1st ‘𝑔)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))〉) |
| 7 | fveq2 6887 | . . . . 5 ⊢ (𝑔 = 𝑖 → (1st ‘𝑔) = (1st ‘𝑖)) | |
| 8 | 7 | coeq2d 5855 | . . . 4 ⊢ (𝑔 = 𝑖 → ((1st ‘ℎ) ∘ (1st ‘𝑔)) = ((1st ‘ℎ) ∘ (1st ‘𝑖))) |
| 9 | fveq2 6887 | . . . . 5 ⊢ (𝑔 = 𝑖 → (2nd ‘𝑔) = (2nd ‘𝑖)) | |
| 10 | 9 | oveq2d 7430 | . . . 4 ⊢ (𝑔 = 𝑖 → ((2nd ‘ℎ) ⨣ (2nd ‘𝑔)) = ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))) |
| 11 | 8, 10 | opeq12d 4863 | . . 3 ⊢ (𝑔 = 𝑖 → 〈((1st ‘ℎ) ∘ (1st ‘𝑔)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))〉 = 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
| 12 | 6, 11 | cbvmpov 7511 | . 2 ⊢ (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
| 13 | 1, 12 | eqtri 2757 | 1 ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 〈cop 4614 × cxp 5665 ∘ ccom 5671 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1st c1st 7995 2nd c2nd 7996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-co 5676 df-iota 6495 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
| This theorem is referenced by: dvhvaddval 41033 |
| Copyright terms: Public domain | W3C validator |