Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddcbv Structured version   Visualization version   GIF version

Theorem dvhvaddcbv 41046
Description: Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.)
Hypothesis
Ref Expression
dvhvaddval.a + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
Assertion
Ref Expression
dvhvaddcbv + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑖,𝐸   ,𝑓,𝑔,,𝑖   𝑇,𝑓,𝑔,,𝑖
Allowed substitution hints:   + (𝑓,𝑔,,𝑖)

Proof of Theorem dvhvaddcbv
StepHypRef Expression
1 dvhvaddval.a . 2 + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
2 fveq2 6920 . . . . 5 (𝑓 = → (1st𝑓) = (1st))
32coeq1d 5886 . . . 4 (𝑓 = → ((1st𝑓) ∘ (1st𝑔)) = ((1st) ∘ (1st𝑔)))
4 fveq2 6920 . . . . 5 (𝑓 = → (2nd𝑓) = (2nd))
54oveq1d 7463 . . . 4 (𝑓 = → ((2nd𝑓) (2nd𝑔)) = ((2nd) (2nd𝑔)))
63, 5opeq12d 4905 . . 3 (𝑓 = → ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩ = ⟨((1st) ∘ (1st𝑔)), ((2nd) (2nd𝑔))⟩)
7 fveq2 6920 . . . . 5 (𝑔 = 𝑖 → (1st𝑔) = (1st𝑖))
87coeq2d 5887 . . . 4 (𝑔 = 𝑖 → ((1st) ∘ (1st𝑔)) = ((1st) ∘ (1st𝑖)))
9 fveq2 6920 . . . . 5 (𝑔 = 𝑖 → (2nd𝑔) = (2nd𝑖))
109oveq2d 7464 . . . 4 (𝑔 = 𝑖 → ((2nd) (2nd𝑔)) = ((2nd) (2nd𝑖)))
118, 10opeq12d 4905 . . 3 (𝑔 = 𝑖 → ⟨((1st) ∘ (1st𝑔)), ((2nd) (2nd𝑔))⟩ = ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
126, 11cbvmpov 7545 . 2 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩) = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
131, 12eqtri 2768 1 + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cop 4654   × cxp 5698  ccom 5704  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-co 5709  df-iota 6525  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  dvhvaddval  41047
  Copyright terms: Public domain W3C validator