Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddcbv Structured version   Visualization version   GIF version

Theorem dvhvaddcbv 41078
Description: Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.)
Hypothesis
Ref Expression
dvhvaddval.a + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
Assertion
Ref Expression
dvhvaddcbv + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑖,𝐸   ,𝑓,𝑔,,𝑖   𝑇,𝑓,𝑔,,𝑖
Allowed substitution hints:   + (𝑓,𝑔,,𝑖)

Proof of Theorem dvhvaddcbv
StepHypRef Expression
1 dvhvaddval.a . 2 + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
2 fveq2 6822 . . . . 5 (𝑓 = → (1st𝑓) = (1st))
32coeq1d 5804 . . . 4 (𝑓 = → ((1st𝑓) ∘ (1st𝑔)) = ((1st) ∘ (1st𝑔)))
4 fveq2 6822 . . . . 5 (𝑓 = → (2nd𝑓) = (2nd))
54oveq1d 7364 . . . 4 (𝑓 = → ((2nd𝑓) (2nd𝑔)) = ((2nd) (2nd𝑔)))
63, 5opeq12d 4832 . . 3 (𝑓 = → ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩ = ⟨((1st) ∘ (1st𝑔)), ((2nd) (2nd𝑔))⟩)
7 fveq2 6822 . . . . 5 (𝑔 = 𝑖 → (1st𝑔) = (1st𝑖))
87coeq2d 5805 . . . 4 (𝑔 = 𝑖 → ((1st) ∘ (1st𝑔)) = ((1st) ∘ (1st𝑖)))
9 fveq2 6822 . . . . 5 (𝑔 = 𝑖 → (2nd𝑔) = (2nd𝑖))
109oveq2d 7365 . . . 4 (𝑔 = 𝑖 → ((2nd) (2nd𝑔)) = ((2nd) (2nd𝑖)))
118, 10opeq12d 4832 . . 3 (𝑔 = 𝑖 → ⟨((1st) ∘ (1st𝑔)), ((2nd) (2nd𝑔))⟩ = ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
126, 11cbvmpov 7444 . 2 (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩) = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
131, 12eqtri 2752 1 + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cop 4583   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-co 5628  df-iota 6438  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  dvhvaddval  41079
  Copyright terms: Public domain W3C validator