Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcbv | Structured version Visualization version GIF version |
Description: Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.) |
Ref | Expression |
---|---|
dvhvaddval.a | ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) |
Ref | Expression |
---|---|
dvhvaddcbv | ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvaddval.a | . 2 ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
2 | fveq2 6774 | . . . . 5 ⊢ (𝑓 = ℎ → (1st ‘𝑓) = (1st ‘ℎ)) | |
3 | 2 | coeq1d 5770 | . . . 4 ⊢ (𝑓 = ℎ → ((1st ‘𝑓) ∘ (1st ‘𝑔)) = ((1st ‘ℎ) ∘ (1st ‘𝑔))) |
4 | fveq2 6774 | . . . . 5 ⊢ (𝑓 = ℎ → (2nd ‘𝑓) = (2nd ‘ℎ)) | |
5 | 4 | oveq1d 7290 | . . . 4 ⊢ (𝑓 = ℎ → ((2nd ‘𝑓) ⨣ (2nd ‘𝑔)) = ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))) |
6 | 3, 5 | opeq12d 4812 | . . 3 ⊢ (𝑓 = ℎ → 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉 = 〈((1st ‘ℎ) ∘ (1st ‘𝑔)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))〉) |
7 | fveq2 6774 | . . . . 5 ⊢ (𝑔 = 𝑖 → (1st ‘𝑔) = (1st ‘𝑖)) | |
8 | 7 | coeq2d 5771 | . . . 4 ⊢ (𝑔 = 𝑖 → ((1st ‘ℎ) ∘ (1st ‘𝑔)) = ((1st ‘ℎ) ∘ (1st ‘𝑖))) |
9 | fveq2 6774 | . . . . 5 ⊢ (𝑔 = 𝑖 → (2nd ‘𝑔) = (2nd ‘𝑖)) | |
10 | 9 | oveq2d 7291 | . . . 4 ⊢ (𝑔 = 𝑖 → ((2nd ‘ℎ) ⨣ (2nd ‘𝑔)) = ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))) |
11 | 8, 10 | opeq12d 4812 | . . 3 ⊢ (𝑔 = 𝑖 → 〈((1st ‘ℎ) ∘ (1st ‘𝑔)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))〉 = 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
12 | 6, 11 | cbvmpov 7370 | . 2 ⊢ (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
13 | 1, 12 | eqtri 2766 | 1 ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 〈cop 4567 × cxp 5587 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-co 5598 df-iota 6391 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: dvhvaddval 39104 |
Copyright terms: Public domain | W3C validator |