Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhelvbasei Structured version   Visualization version   GIF version

Theorem dvhelvbasei 41260
Description: Vector membership in the constructed full vector space H. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dvhvbase.h 𝐻 = (LHyp‘𝐾)
dvhvbase.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvbase.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvbase.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvbase.v 𝑉 = (Base‘𝑈)
Assertion
Ref Expression
dvhelvbasei (((𝐾𝑋𝑊𝐻) ∧ (𝐹𝑇𝑆𝐸)) → ⟨𝐹, 𝑆⟩ ∈ 𝑉)

Proof of Theorem dvhelvbasei
StepHypRef Expression
1 opelxpi 5658 . . 3 ((𝐹𝑇𝑆𝐸) → ⟨𝐹, 𝑆⟩ ∈ (𝑇 × 𝐸))
21adantl 481 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝐹𝑇𝑆𝐸)) → ⟨𝐹, 𝑆⟩ ∈ (𝑇 × 𝐸))
3 dvhvbase.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dvhvbase.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dvhvbase.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 dvhvbase.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 dvhvbase.v . . . 4 𝑉 = (Base‘𝑈)
83, 4, 5, 6, 7dvhvbase 41259 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑉 = (𝑇 × 𝐸))
98adantr 480 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝐹𝑇𝑆𝐸)) → 𝑉 = (𝑇 × 𝐸))
102, 9eleqtrrd 2836 1 (((𝐾𝑋𝑊𝐻) ∧ (𝐹𝑇𝑆𝐸)) → ⟨𝐹, 𝑆⟩ ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cfv 6489  Basecbs 17127  LHypclh 40156  LTrncltrn 40273  TEndoctendo 40924  DVecHcdvh 41250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-sca 17184  df-vsca 17185  df-dvech 41251
This theorem is referenced by:  dvh0g  41283  dvheveccl  41284  dib1dim2  41340  diclspsn  41366  cdlemn4a  41371  dih1dimatlem  41501  dihatlat  41506  dihatexv  41510
  Copyright terms: Public domain W3C validator