Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhelvbasei | Structured version Visualization version GIF version |
Description: Vector membership in the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
dvhvbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvbase.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvbase.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvbase.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvbase.v | ⊢ 𝑉 = (Base‘𝑈) |
Ref | Expression |
---|---|
dvhelvbasei | ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸)) → 〈𝐹, 𝑆〉 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5637 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) → 〈𝐹, 𝑆〉 ∈ (𝑇 × 𝐸)) | |
2 | 1 | adantl 483 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸)) → 〈𝐹, 𝑆〉 ∈ (𝑇 × 𝐸)) |
3 | dvhvbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvhvbase.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dvhvbase.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | dvhvbase.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dvhvbase.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
8 | 3, 4, 5, 6, 7 | dvhvbase 39301 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑉 = (𝑇 × 𝐸)) |
9 | 8 | adantr 482 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸)) → 𝑉 = (𝑇 × 𝐸)) |
10 | 2, 9 | eleqtrrd 2840 | 1 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸)) → 〈𝐹, 𝑆〉 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 〈cop 4571 × cxp 5598 ‘cfv 6458 Basecbs 16961 LHypclh 38198 LTrncltrn 38315 TEndoctendo 38966 DVecHcdvh 39292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-struct 16897 df-slot 16932 df-ndx 16944 df-base 16962 df-plusg 17024 df-sca 17027 df-vsca 17028 df-dvech 39293 |
This theorem is referenced by: dvh0g 39325 dvheveccl 39326 dib1dim2 39382 diclspsn 39408 cdlemn4a 39413 dih1dimatlem 39543 dihatlat 39548 dihatexv 39552 |
Copyright terms: Public domain | W3C validator |