![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddval | Structured version Visualization version GIF version |
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) |
Ref | Expression |
---|---|
dvhvaddval.a | ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) |
Ref | Expression |
---|---|
dvhvaddval | ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (ℎ = 𝐹 → (1st ‘ℎ) = (1st ‘𝐹)) | |
2 | 1 | coeq1d 5886 | . . 3 ⊢ (ℎ = 𝐹 → ((1st ‘ℎ) ∘ (1st ‘𝑖)) = ((1st ‘𝐹) ∘ (1st ‘𝑖))) |
3 | fveq2 6920 | . . . 4 ⊢ (ℎ = 𝐹 → (2nd ‘ℎ) = (2nd ‘𝐹)) | |
4 | 3 | oveq1d 7463 | . . 3 ⊢ (ℎ = 𝐹 → ((2nd ‘ℎ) ⨣ (2nd ‘𝑖)) = ((2nd ‘𝐹) ⨣ (2nd ‘𝑖))) |
5 | 2, 4 | opeq12d 4905 | . 2 ⊢ (ℎ = 𝐹 → 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉 = 〈((1st ‘𝐹) ∘ (1st ‘𝑖)), ((2nd ‘𝐹) ⨣ (2nd ‘𝑖))〉) |
6 | fveq2 6920 | . . . 4 ⊢ (𝑖 = 𝐺 → (1st ‘𝑖) = (1st ‘𝐺)) | |
7 | 6 | coeq2d 5887 | . . 3 ⊢ (𝑖 = 𝐺 → ((1st ‘𝐹) ∘ (1st ‘𝑖)) = ((1st ‘𝐹) ∘ (1st ‘𝐺))) |
8 | fveq2 6920 | . . . 4 ⊢ (𝑖 = 𝐺 → (2nd ‘𝑖) = (2nd ‘𝐺)) | |
9 | 8 | oveq2d 7464 | . . 3 ⊢ (𝑖 = 𝐺 → ((2nd ‘𝐹) ⨣ (2nd ‘𝑖)) = ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))) |
10 | 7, 9 | opeq12d 4905 | . 2 ⊢ (𝑖 = 𝐺 → 〈((1st ‘𝐹) ∘ (1st ‘𝑖)), ((2nd ‘𝐹) ⨣ (2nd ‘𝑖))〉 = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
11 | dvhvaddval.a | . . 3 ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
12 | 11 | dvhvaddcbv 41046 | . 2 ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
13 | opex 5484 | . 2 ⊢ 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 ∈ V | |
14 | 5, 10, 12, 13 | ovmpo 7610 | 1 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: dvhvadd 41049 dvhopaddN 41071 |
Copyright terms: Public domain | W3C validator |