Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddval Structured version   Visualization version   GIF version

Theorem dvhvaddval 39031
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.)
Hypothesis
Ref Expression
dvhvaddval.a + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
Assertion
Ref Expression
dvhvaddval ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
Distinct variable groups:   𝑓,𝑔,𝐸   ,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓,𝑔)

Proof of Theorem dvhvaddval
Dummy variables 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 ( = 𝐹 → (1st) = (1st𝐹))
21coeq1d 5759 . . 3 ( = 𝐹 → ((1st) ∘ (1st𝑖)) = ((1st𝐹) ∘ (1st𝑖)))
3 fveq2 6756 . . . 4 ( = 𝐹 → (2nd) = (2nd𝐹))
43oveq1d 7270 . . 3 ( = 𝐹 → ((2nd) (2nd𝑖)) = ((2nd𝐹) (2nd𝑖)))
52, 4opeq12d 4809 . 2 ( = 𝐹 → ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩ = ⟨((1st𝐹) ∘ (1st𝑖)), ((2nd𝐹) (2nd𝑖))⟩)
6 fveq2 6756 . . . 4 (𝑖 = 𝐺 → (1st𝑖) = (1st𝐺))
76coeq2d 5760 . . 3 (𝑖 = 𝐺 → ((1st𝐹) ∘ (1st𝑖)) = ((1st𝐹) ∘ (1st𝐺)))
8 fveq2 6756 . . . 4 (𝑖 = 𝐺 → (2nd𝑖) = (2nd𝐺))
98oveq2d 7271 . . 3 (𝑖 = 𝐺 → ((2nd𝐹) (2nd𝑖)) = ((2nd𝐹) (2nd𝐺)))
107, 9opeq12d 4809 . 2 (𝑖 = 𝐺 → ⟨((1st𝐹) ∘ (1st𝑖)), ((2nd𝐹) (2nd𝑖))⟩ = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
11 dvhvaddval.a . . 3 + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
1211dvhvaddcbv 39030 . 2 + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
13 opex 5373 . 2 ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩ ∈ V
145, 10, 12, 13ovmpo 7411 1 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   × cxp 5578  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  dvhvadd  39033  dvhopaddN  39055
  Copyright terms: Public domain W3C validator