| Step | Hyp | Ref
| Expression |
| 1 | | quslsm.n |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| 2 | | subgrcl 19149 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | | quslsm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 5 | 4 | subgss 19145 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 6 | 1, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 7 | | eqid 2737 |
. . . . . 6
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 8 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 9 | | eqid 2737 |
. . . . . 6
⊢ (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆) |
| 10 | 4, 7, 8, 9 | eqgfval 19194 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝐺 ~QG 𝑆) = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆)}) |
| 11 | 3, 6, 10 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐺 ~QG 𝑆) = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆)}) |
| 12 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) |
| 13 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑘 =
(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) → (𝑖(+g‘𝐺)𝑘) = (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗))) |
| 14 | 13 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑘 =
(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) → ((𝑖(+g‘𝐺)𝑘) = 𝑗 ↔ (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) = 𝑗)) |
| 15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) ∧ 𝑘 = (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) → ((𝑖(+g‘𝐺)𝑘) = 𝑗 ↔ (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) = 𝑗)) |
| 16 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝐺 ∈ Grp) |
| 17 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑖 ∈ V |
| 18 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑗 ∈ V |
| 19 | 17, 18 | prss 4820 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) ↔ {𝑖, 𝑗} ⊆ 𝐵) |
| 20 | 19 | bicomi 224 |
. . . . . . . . . . . . . 14
⊢ ({𝑖, 𝑗} ⊆ 𝐵 ↔ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) |
| 21 | 20 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ ({𝑖, 𝑗} ⊆ 𝐵 → 𝑖 ∈ 𝐵) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑖 ∈ 𝐵) |
| 23 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 24 | 4, 8, 23, 7 | grprinv 19008 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑖 ∈ 𝐵) → (𝑖(+g‘𝐺)((invg‘𝐺)‘𝑖)) = (0g‘𝐺)) |
| 25 | 16, 22, 24 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g‘𝐺)((invg‘𝐺)‘𝑖)) = (0g‘𝐺)) |
| 26 | 25 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g‘𝐺)((invg‘𝐺)‘𝑖))(+g‘𝐺)𝑗) = ((0g‘𝐺)(+g‘𝐺)𝑗)) |
| 27 | 4, 7 | grpinvcl 19005 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑖 ∈ 𝐵) → ((invg‘𝐺)‘𝑖) ∈ 𝐵) |
| 28 | 16, 22, 27 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((invg‘𝐺)‘𝑖) ∈ 𝐵) |
| 29 | 20 | simprbi 496 |
. . . . . . . . . . . 12
⊢ ({𝑖, 𝑗} ⊆ 𝐵 → 𝑗 ∈ 𝐵) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑗 ∈ 𝐵) |
| 31 | 4, 8 | grpass 18960 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑖 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑖) ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → ((𝑖(+g‘𝐺)((invg‘𝐺)‘𝑖))(+g‘𝐺)𝑗) = (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗))) |
| 32 | 16, 22, 28, 30, 31 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g‘𝐺)((invg‘𝐺)‘𝑖))(+g‘𝐺)𝑗) = (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗))) |
| 33 | 4, 8, 23 | grplid 18985 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑗 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑗) = 𝑗) |
| 34 | 16, 30, 33 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑗) = 𝑗) |
| 35 | 26, 32, 34 | 3eqtr3d 2785 |
. . . . . . . . 9
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) = 𝑗) |
| 36 | 35 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) → (𝑖(+g‘𝐺)(((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) = 𝑗) |
| 37 | 12, 15, 36 | rspcedvd 3624 |
. . . . . . 7
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) → ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗) |
| 38 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ ((𝑖(+g‘𝐺)𝑘) = 𝑗 → (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘)) = (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) |
| 39 | 38 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) ∧ (𝑖(+g‘𝐺)𝑘) = 𝑗) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘)) = (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗)) |
| 40 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) → 𝜑) |
| 41 | 22 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) → 𝑖 ∈ 𝐵) |
| 42 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑆 ⊆ 𝐵) |
| 43 | 42 | sselda 3983 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) → 𝑘 ∈ 𝐵) |
| 44 | 3 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ Grp) |
| 45 | | simp2 1138 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → 𝑖 ∈ 𝐵) |
| 46 | 4, 8, 23, 7 | grplinv 19007 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝑖 ∈ 𝐵) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑖) = (0g‘𝐺)) |
| 47 | 44, 45, 46 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑖) = (0g‘𝐺)) |
| 48 | 47 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → ((((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑖)(+g‘𝐺)𝑘) = ((0g‘𝐺)(+g‘𝐺)𝑘)) |
| 49 | 44, 45, 27 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → ((invg‘𝐺)‘𝑖) ∈ 𝐵) |
| 50 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
| 51 | 4, 8 | grpass 18960 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑖) ∈ 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵)) → ((((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑖)(+g‘𝐺)𝑘) = (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘))) |
| 52 | 44, 49, 45, 50, 51 | syl13anc 1374 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → ((((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑖)(+g‘𝐺)𝑘) = (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘))) |
| 53 | 4, 8, 23 | grplid 18985 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝑘 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑘) = 𝑘) |
| 54 | 44, 50, 53 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑘) = 𝑘) |
| 55 | 48, 52, 54 | 3eqtr3d 2785 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘)) = 𝑘) |
| 56 | 40, 41, 43, 55 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘)) = 𝑘) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) ∧ (𝑖(+g‘𝐺)𝑘) = 𝑗) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)(𝑖(+g‘𝐺)𝑘)) = 𝑘) |
| 58 | 39, 57 | eqtr3d 2779 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) ∧ (𝑖(+g‘𝐺)𝑘) = 𝑗) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) = 𝑘) |
| 59 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) ∧ (𝑖(+g‘𝐺)𝑘) = 𝑗) → 𝑘 ∈ 𝑆) |
| 60 | 58, 59 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘 ∈ 𝑆) ∧ (𝑖(+g‘𝐺)𝑘) = 𝑗) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) |
| 61 | 60 | r19.29an 3158 |
. . . . . . 7
⊢ (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗) → (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) |
| 62 | 37, 61 | impbida 801 |
. . . . . 6
⊢ ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆 ↔ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)) |
| 63 | 62 | pm5.32da 579 |
. . . . 5
⊢ (𝜑 → (({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆) ↔ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗))) |
| 64 | 63 | opabbidv 5209 |
. . . 4
⊢ (𝜑 → {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑖)(+g‘𝐺)𝑗) ∈ 𝑆)} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)}) |
| 65 | 11, 64 | eqtrd 2777 |
. . 3
⊢ (𝜑 → (𝐺 ~QG 𝑆) = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)}) |
| 66 | 65 | eceq2d 8788 |
. 2
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑆) = [𝑋]{〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)}) |
| 67 | | quslsm.p |
. . 3
⊢ ⊕ =
(LSSum‘𝐺) |
| 68 | | eqid 2737 |
. . 3
⊢
{〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)} |
| 69 | 3 | grpmndd 18964 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 70 | | quslsm.s |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 71 | 4, 8, 67, 68, 69, 6, 70 | lsmsnorb2 33420 |
. 2
⊢ (𝜑 → ({𝑋} ⊕ 𝑆) = [𝑋]{〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘 ∈ 𝑆 (𝑖(+g‘𝐺)𝑘) = 𝑗)}) |
| 72 | 66, 71 | eqtr4d 2780 |
1
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} ⊕ 𝑆)) |