Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslsm Structured version   Visualization version   GIF version

Theorem quslsm 33420
Description: Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
quslsm.b 𝐵 = (Base‘𝐺)
quslsm.p = (LSSum‘𝐺)
quslsm.n (𝜑𝑆 ∈ (SubGrp‘𝐺))
quslsm.s (𝜑𝑋𝐵)
Assertion
Ref Expression
quslsm (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))

Proof of Theorem quslsm
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslsm.n . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 19114 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 quslsm.b . . . . . . 7 𝐵 = (Base‘𝐺)
54subgss 19110 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
61, 5syl 17 . . . . 5 (𝜑𝑆𝐵)
7 eqid 2735 . . . . . 6 (invg𝐺) = (invg𝐺)
8 eqid 2735 . . . . . 6 (+g𝐺) = (+g𝐺)
9 eqid 2735 . . . . . 6 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
104, 7, 8, 9eqgfval 19159 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)})
113, 6, 10syl2anc 584 . . . 4 (𝜑 → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)})
12 simpr 484 . . . . . . . 8 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
13 oveq2 7413 . . . . . . . . . 10 (𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗) → (𝑖(+g𝐺)𝑘) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
1413eqeq1d 2737 . . . . . . . . 9 (𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗) → ((𝑖(+g𝐺)𝑘) = 𝑗 ↔ (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗))
1514adantl 481 . . . . . . . 8 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) ∧ 𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗)) → ((𝑖(+g𝐺)𝑘) = 𝑗 ↔ (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗))
163adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝐺 ∈ Grp)
17 vex 3463 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
18 vex 3463 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
1917, 18prss 4796 . . . . . . . . . . . . . . 15 ((𝑖𝐵𝑗𝐵) ↔ {𝑖, 𝑗} ⊆ 𝐵)
2019bicomi 224 . . . . . . . . . . . . . 14 ({𝑖, 𝑗} ⊆ 𝐵 ↔ (𝑖𝐵𝑗𝐵))
2120simplbi 497 . . . . . . . . . . . . 13 ({𝑖, 𝑗} ⊆ 𝐵𝑖𝐵)
2221adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑖𝐵)
23 eqid 2735 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
244, 8, 23, 7grprinv 18973 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → (𝑖(+g𝐺)((invg𝐺)‘𝑖)) = (0g𝐺))
2516, 22, 24syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g𝐺)((invg𝐺)‘𝑖)) = (0g𝐺))
2625oveq1d 7420 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = ((0g𝐺)(+g𝐺)𝑗))
274, 7grpinvcl 18970 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
2816, 22, 27syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
2920simprbi 496 . . . . . . . . . . . 12 ({𝑖, 𝑗} ⊆ 𝐵𝑗𝐵)
3029adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑗𝐵)
314, 8grpass 18925 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖𝐵 ∧ ((invg𝐺)‘𝑖) ∈ 𝐵𝑗𝐵)) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
3216, 22, 28, 30, 31syl13anc 1374 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
334, 8, 23grplid 18950 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑗𝐵) → ((0g𝐺)(+g𝐺)𝑗) = 𝑗)
3416, 30, 33syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((0g𝐺)(+g𝐺)𝑗) = 𝑗)
3526, 32, 343eqtr3d 2778 . . . . . . . . 9 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗)
3635adantr 480 . . . . . . . 8 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗)
3712, 15, 36rspcedvd 3603 . . . . . . 7 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)
38 oveq2 7413 . . . . . . . . . . 11 ((𝑖(+g𝐺)𝑘) = 𝑗 → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = (((invg𝐺)‘𝑖)(+g𝐺)𝑗))
3938adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = (((invg𝐺)‘𝑖)(+g𝐺)𝑗))
40 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝜑)
4122adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝑖𝐵)
426adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑆𝐵)
4342sselda 3958 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝑘𝐵)
4433ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐵𝑘𝐵) → 𝐺 ∈ Grp)
45 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐵𝑘𝐵) → 𝑖𝐵)
464, 8, 23, 7grplinv 18972 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)𝑖) = (0g𝐺))
4744, 45, 46syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)𝑖) = (0g𝐺))
4847oveq1d 7420 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = ((0g𝐺)(+g𝐺)𝑘))
4944, 45, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
50 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → 𝑘𝐵)
514, 8grpass 18925 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑖) ∈ 𝐵𝑖𝐵𝑘𝐵)) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)))
5244, 49, 45, 50, 51syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)))
534, 8, 23grplid 18950 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑘𝐵) → ((0g𝐺)(+g𝐺)𝑘) = 𝑘)
5444, 50, 53syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((0g𝐺)(+g𝐺)𝑘) = 𝑘)
5548, 52, 543eqtr3d 2778 . . . . . . . . . . . 12 ((𝜑𝑖𝐵𝑘𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5640, 41, 43, 55syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5756adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5839, 57eqtr3d 2772 . . . . . . . . 9 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) = 𝑘)
59 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → 𝑘𝑆)
6058, 59eqeltrd 2834 . . . . . . . 8 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
6160r19.29an 3144 . . . . . . 7 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
6237, 61impbida 800 . . . . . 6 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆 ↔ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗))
6362pm5.32da 579 . . . . 5 (𝜑 → (({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) ↔ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)))
6463opabbidv 5185 . . . 4 (𝜑 → {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
6511, 64eqtrd 2770 . . 3 (𝜑 → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
6665eceq2d 8762 . 2 (𝜑 → [𝑋](𝐺 ~QG 𝑆) = [𝑋]{⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
67 quslsm.p . . 3 = (LSSum‘𝐺)
68 eqid 2735 . . 3 {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)}
693grpmndd 18929 . . 3 (𝜑𝐺 ∈ Mnd)
70 quslsm.s . . 3 (𝜑𝑋𝐵)
714, 8, 67, 68, 69, 6, 70lsmsnorb2 33407 . 2 (𝜑 → ({𝑋} 𝑆) = [𝑋]{⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
7266, 71eqtr4d 2773 1 (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  wss 3926  {csn 4601  {cpr 4603  {copab 5181  cfv 6531  (class class class)co 7405  [cec 8717  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916  invgcminusg 18917  SubGrpcsubg 19103   ~QG cqg 19105  LSSumclsm 19615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-ec 8721  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-eqg 19108  df-oppg 19329  df-lsm 19617
This theorem is referenced by:  qusbas2  33421  qus0g  33422  qusima  33423  nsgqus0  33425  nsgmgclem  33426  nsgqusf1olem1  33428  nsgqusf1olem2  33429  nsgqusf1olem3  33430
  Copyright terms: Public domain W3C validator