Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslsm Structured version   Visualization version   GIF version

Theorem quslsm 33433
Description: Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
quslsm.b 𝐵 = (Base‘𝐺)
quslsm.p = (LSSum‘𝐺)
quslsm.n (𝜑𝑆 ∈ (SubGrp‘𝐺))
quslsm.s (𝜑𝑋𝐵)
Assertion
Ref Expression
quslsm (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))

Proof of Theorem quslsm
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslsm.n . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 19149 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 quslsm.b . . . . . . 7 𝐵 = (Base‘𝐺)
54subgss 19145 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
61, 5syl 17 . . . . 5 (𝜑𝑆𝐵)
7 eqid 2737 . . . . . 6 (invg𝐺) = (invg𝐺)
8 eqid 2737 . . . . . 6 (+g𝐺) = (+g𝐺)
9 eqid 2737 . . . . . 6 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
104, 7, 8, 9eqgfval 19194 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)})
113, 6, 10syl2anc 584 . . . 4 (𝜑 → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)})
12 simpr 484 . . . . . . . 8 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
13 oveq2 7439 . . . . . . . . . 10 (𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗) → (𝑖(+g𝐺)𝑘) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
1413eqeq1d 2739 . . . . . . . . 9 (𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗) → ((𝑖(+g𝐺)𝑘) = 𝑗 ↔ (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗))
1514adantl 481 . . . . . . . 8 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) ∧ 𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗)) → ((𝑖(+g𝐺)𝑘) = 𝑗 ↔ (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗))
163adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝐺 ∈ Grp)
17 vex 3484 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
18 vex 3484 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
1917, 18prss 4820 . . . . . . . . . . . . . . 15 ((𝑖𝐵𝑗𝐵) ↔ {𝑖, 𝑗} ⊆ 𝐵)
2019bicomi 224 . . . . . . . . . . . . . 14 ({𝑖, 𝑗} ⊆ 𝐵 ↔ (𝑖𝐵𝑗𝐵))
2120simplbi 497 . . . . . . . . . . . . 13 ({𝑖, 𝑗} ⊆ 𝐵𝑖𝐵)
2221adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑖𝐵)
23 eqid 2737 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
244, 8, 23, 7grprinv 19008 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → (𝑖(+g𝐺)((invg𝐺)‘𝑖)) = (0g𝐺))
2516, 22, 24syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g𝐺)((invg𝐺)‘𝑖)) = (0g𝐺))
2625oveq1d 7446 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = ((0g𝐺)(+g𝐺)𝑗))
274, 7grpinvcl 19005 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
2816, 22, 27syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
2920simprbi 496 . . . . . . . . . . . 12 ({𝑖, 𝑗} ⊆ 𝐵𝑗𝐵)
3029adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑗𝐵)
314, 8grpass 18960 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖𝐵 ∧ ((invg𝐺)‘𝑖) ∈ 𝐵𝑗𝐵)) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
3216, 22, 28, 30, 31syl13anc 1374 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
334, 8, 23grplid 18985 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑗𝐵) → ((0g𝐺)(+g𝐺)𝑗) = 𝑗)
3416, 30, 33syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((0g𝐺)(+g𝐺)𝑗) = 𝑗)
3526, 32, 343eqtr3d 2785 . . . . . . . . 9 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗)
3635adantr 480 . . . . . . . 8 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗)
3712, 15, 36rspcedvd 3624 . . . . . . 7 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)
38 oveq2 7439 . . . . . . . . . . 11 ((𝑖(+g𝐺)𝑘) = 𝑗 → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = (((invg𝐺)‘𝑖)(+g𝐺)𝑗))
3938adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = (((invg𝐺)‘𝑖)(+g𝐺)𝑗))
40 simpll 767 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝜑)
4122adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝑖𝐵)
426adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑆𝐵)
4342sselda 3983 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝑘𝐵)
4433ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐵𝑘𝐵) → 𝐺 ∈ Grp)
45 simp2 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐵𝑘𝐵) → 𝑖𝐵)
464, 8, 23, 7grplinv 19007 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)𝑖) = (0g𝐺))
4744, 45, 46syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)𝑖) = (0g𝐺))
4847oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = ((0g𝐺)(+g𝐺)𝑘))
4944, 45, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
50 simp3 1139 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → 𝑘𝐵)
514, 8grpass 18960 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑖) ∈ 𝐵𝑖𝐵𝑘𝐵)) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)))
5244, 49, 45, 50, 51syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)))
534, 8, 23grplid 18985 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑘𝐵) → ((0g𝐺)(+g𝐺)𝑘) = 𝑘)
5444, 50, 53syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((0g𝐺)(+g𝐺)𝑘) = 𝑘)
5548, 52, 543eqtr3d 2785 . . . . . . . . . . . 12 ((𝜑𝑖𝐵𝑘𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5640, 41, 43, 55syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5756adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5839, 57eqtr3d 2779 . . . . . . . . 9 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) = 𝑘)
59 simplr 769 . . . . . . . . 9 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → 𝑘𝑆)
6058, 59eqeltrd 2841 . . . . . . . 8 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
6160r19.29an 3158 . . . . . . 7 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
6237, 61impbida 801 . . . . . 6 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆 ↔ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗))
6362pm5.32da 579 . . . . 5 (𝜑 → (({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) ↔ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)))
6463opabbidv 5209 . . . 4 (𝜑 → {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
6511, 64eqtrd 2777 . . 3 (𝜑 → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
6665eceq2d 8788 . 2 (𝜑 → [𝑋](𝐺 ~QG 𝑆) = [𝑋]{⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
67 quslsm.p . . 3 = (LSSum‘𝐺)
68 eqid 2737 . . 3 {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)}
693grpmndd 18964 . . 3 (𝜑𝐺 ∈ Mnd)
70 quslsm.s . . 3 (𝜑𝑋𝐵)
714, 8, 67, 68, 69, 6, 70lsmsnorb2 33420 . 2 (𝜑 → ({𝑋} 𝑆) = [𝑋]{⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
7266, 71eqtr4d 2780 1 (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  wss 3951  {csn 4626  {cpr 4628  {copab 5205  cfv 6561  (class class class)co 7431  [cec 8743  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138   ~QG cqg 19140  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-ec 8747  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-eqg 19143  df-oppg 19364  df-lsm 19654
This theorem is referenced by:  qusbas2  33434  qus0g  33435  qusima  33436  nsgqus0  33438  nsgmgclem  33439  nsgqusf1olem1  33441  nsgqusf1olem2  33442  nsgqusf1olem3  33443
  Copyright terms: Public domain W3C validator