Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslsm Structured version   Visualization version   GIF version

Theorem quslsm 33413
Description: Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
quslsm.b 𝐵 = (Base‘𝐺)
quslsm.p = (LSSum‘𝐺)
quslsm.n (𝜑𝑆 ∈ (SubGrp‘𝐺))
quslsm.s (𝜑𝑋𝐵)
Assertion
Ref Expression
quslsm (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))

Proof of Theorem quslsm
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslsm.n . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 19162 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 quslsm.b . . . . . . 7 𝐵 = (Base‘𝐺)
54subgss 19158 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
61, 5syl 17 . . . . 5 (𝜑𝑆𝐵)
7 eqid 2735 . . . . . 6 (invg𝐺) = (invg𝐺)
8 eqid 2735 . . . . . 6 (+g𝐺) = (+g𝐺)
9 eqid 2735 . . . . . 6 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
104, 7, 8, 9eqgfval 19207 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)})
113, 6, 10syl2anc 584 . . . 4 (𝜑 → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)})
12 simpr 484 . . . . . . . 8 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
13 oveq2 7439 . . . . . . . . . 10 (𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗) → (𝑖(+g𝐺)𝑘) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
1413eqeq1d 2737 . . . . . . . . 9 (𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗) → ((𝑖(+g𝐺)𝑘) = 𝑗 ↔ (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗))
1514adantl 481 . . . . . . . 8 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) ∧ 𝑘 = (((invg𝐺)‘𝑖)(+g𝐺)𝑗)) → ((𝑖(+g𝐺)𝑘) = 𝑗 ↔ (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗))
163adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝐺 ∈ Grp)
17 vex 3482 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
18 vex 3482 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
1917, 18prss 4825 . . . . . . . . . . . . . . 15 ((𝑖𝐵𝑗𝐵) ↔ {𝑖, 𝑗} ⊆ 𝐵)
2019bicomi 224 . . . . . . . . . . . . . 14 ({𝑖, 𝑗} ⊆ 𝐵 ↔ (𝑖𝐵𝑗𝐵))
2120simplbi 497 . . . . . . . . . . . . 13 ({𝑖, 𝑗} ⊆ 𝐵𝑖𝐵)
2221adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑖𝐵)
23 eqid 2735 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
244, 8, 23, 7grprinv 19021 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → (𝑖(+g𝐺)((invg𝐺)‘𝑖)) = (0g𝐺))
2516, 22, 24syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g𝐺)((invg𝐺)‘𝑖)) = (0g𝐺))
2625oveq1d 7446 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = ((0g𝐺)(+g𝐺)𝑗))
274, 7grpinvcl 19018 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
2816, 22, 27syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
2920simprbi 496 . . . . . . . . . . . 12 ({𝑖, 𝑗} ⊆ 𝐵𝑗𝐵)
3029adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑗𝐵)
314, 8grpass 18973 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖𝐵 ∧ ((invg𝐺)‘𝑖) ∈ 𝐵𝑗𝐵)) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
3216, 22, 28, 30, 31syl13anc 1371 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((𝑖(+g𝐺)((invg𝐺)‘𝑖))(+g𝐺)𝑗) = (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)))
334, 8, 23grplid 18998 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑗𝐵) → ((0g𝐺)(+g𝐺)𝑗) = 𝑗)
3416, 30, 33syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((0g𝐺)(+g𝐺)𝑗) = 𝑗)
3526, 32, 343eqtr3d 2783 . . . . . . . . 9 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗)
3635adantr 480 . . . . . . . 8 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → (𝑖(+g𝐺)(((invg𝐺)‘𝑖)(+g𝐺)𝑗)) = 𝑗)
3712, 15, 36rspcedvd 3624 . . . . . . 7 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) → ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)
38 oveq2 7439 . . . . . . . . . . 11 ((𝑖(+g𝐺)𝑘) = 𝑗 → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = (((invg𝐺)‘𝑖)(+g𝐺)𝑗))
3938adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = (((invg𝐺)‘𝑖)(+g𝐺)𝑗))
40 simpll 767 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝜑)
4122adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝑖𝐵)
426adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → 𝑆𝐵)
4342sselda 3995 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → 𝑘𝐵)
4433ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐵𝑘𝐵) → 𝐺 ∈ Grp)
45 simp2 1136 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐵𝑘𝐵) → 𝑖𝐵)
464, 8, 23, 7grplinv 19020 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑖𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)𝑖) = (0g𝐺))
4744, 45, 46syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)𝑖) = (0g𝐺))
4847oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = ((0g𝐺)(+g𝐺)𝑘))
4944, 45, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → ((invg𝐺)‘𝑖) ∈ 𝐵)
50 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐵𝑘𝐵) → 𝑘𝐵)
514, 8grpass 18973 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑖) ∈ 𝐵𝑖𝐵𝑘𝐵)) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)))
5244, 49, 45, 50, 51syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑖)(+g𝐺)𝑘) = (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)))
534, 8, 23grplid 18998 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑘𝐵) → ((0g𝐺)(+g𝐺)𝑘) = 𝑘)
5444, 50, 53syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝐵𝑘𝐵) → ((0g𝐺)(+g𝐺)𝑘) = 𝑘)
5548, 52, 543eqtr3d 2783 . . . . . . . . . . . 12 ((𝜑𝑖𝐵𝑘𝐵) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5640, 41, 43, 55syl3anc 1370 . . . . . . . . . . 11 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5756adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)(𝑖(+g𝐺)𝑘)) = 𝑘)
5839, 57eqtr3d 2777 . . . . . . . . 9 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) = 𝑘)
59 simplr 769 . . . . . . . . 9 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → 𝑘𝑆)
6058, 59eqeltrd 2839 . . . . . . . 8 ((((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ 𝑘𝑆) ∧ (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
6160r19.29an 3156 . . . . . . 7 (((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗) → (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)
6237, 61impbida 801 . . . . . 6 ((𝜑 ∧ {𝑖, 𝑗} ⊆ 𝐵) → ((((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆 ↔ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗))
6362pm5.32da 579 . . . . 5 (𝜑 → (({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆) ↔ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)))
6463opabbidv 5214 . . . 4 (𝜑 → {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑖)(+g𝐺)𝑗) ∈ 𝑆)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
6511, 64eqtrd 2775 . . 3 (𝜑 → (𝐺 ~QG 𝑆) = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
6665eceq2d 8787 . 2 (𝜑 → [𝑋](𝐺 ~QG 𝑆) = [𝑋]{⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
67 quslsm.p . . 3 = (LSSum‘𝐺)
68 eqid 2735 . . 3 {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)}
693grpmndd 18977 . . 3 (𝜑𝐺 ∈ Mnd)
70 quslsm.s . . 3 (𝜑𝑋𝐵)
714, 8, 67, 68, 69, 6, 70lsmsnorb2 33400 . 2 (𝜑 → ({𝑋} 𝑆) = [𝑋]{⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵 ∧ ∃𝑘𝑆 (𝑖(+g𝐺)𝑘) = 𝑗)})
7266, 71eqtr4d 2778 1 (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  wss 3963  {csn 4631  {cpr 4633  {copab 5210  cfv 6563  (class class class)co 7431  [cec 8742  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151   ~QG cqg 19153  LSSumclsm 19667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-ec 8746  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-eqg 19156  df-oppg 19377  df-lsm 19669
This theorem is referenced by:  qusbas2  33414  qus0g  33415  qusima  33416  nsgqus0  33418  nsgmgclem  33419  nsgqusf1olem1  33421  nsgqusf1olem2  33422  nsgqusf1olem3  33423
  Copyright terms: Public domain W3C validator