MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpfval Structured version   Visualization version   GIF version

Theorem vrgpfval 19664
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
Distinct variable groups:   𝑗,𝐼   ,𝑗   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrgpfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.u . 2 𝑈 = (varFGrp𝐼)
2 elex 3459 . . 3 (𝐼𝑉𝐼 ∈ V)
3 id 22 . . . . 5 (𝑖 = 𝐼𝑖 = 𝐼)
4 fveq2 6826 . . . . . . 7 (𝑖 = 𝐼 → ( ~FG𝑖) = ( ~FG𝐼))
5 vrgpfval.r . . . . . . 7 = ( ~FG𝐼)
64, 5eqtr4di 2782 . . . . . 6 (𝑖 = 𝐼 → ( ~FG𝑖) = )
76eceq2d 8675 . . . . 5 (𝑖 = 𝐼 → [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖) = [⟨“⟨𝑗, ∅⟩”⟩] )
83, 7mpteq12dv 5182 . . . 4 (𝑖 = 𝐼 → (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
9 df-vrgp 19609 . . . 4 varFGrp = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)))
10 vex 3442 . . . . 5 𝑖 ∈ V
1110mptex 7163 . . . 4 (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)) ∈ V
128, 9, 11fvmpt3i 6939 . . 3 (𝐼 ∈ V → (varFGrp𝐼) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
132, 12syl 17 . 2 (𝐼𝑉 → (varFGrp𝐼) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
141, 13eqtrid 2776 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  cop 4585  cmpt 5176  cfv 6486  [cec 8630  ⟨“cs1 14521   ~FG cefg 19604  varFGrpcvrgp 19606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ec 8634  df-vrgp 19609
This theorem is referenced by:  vrgpval  19665  vrgpf  19666
  Copyright terms: Public domain W3C validator