![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpfval | Structured version Visualization version GIF version |
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.u | . 2 ⊢ 𝑈 = (varFGrp‘𝐼) | |
2 | elex 3492 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | id 22 | . . . . 5 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
4 | fveq2 6888 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
5 | vrgpfval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
6 | 4, 5 | eqtr4di 2790 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
7 | 6 | eceq2d 8741 | . . . . 5 ⊢ (𝑖 = 𝐼 → [⟨“⟨𝑗, ∅⟩”⟩]( ~FG ‘𝑖) = [⟨“⟨𝑗, ∅⟩”⟩] ∼ ) |
8 | 3, 7 | mpteq12dv 5238 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG ‘𝑖)) = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )) |
9 | df-vrgp 19573 | . . . 4 ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG ‘𝑖))) | |
10 | vex 3478 | . . . . 5 ⊢ 𝑖 ∈ V | |
11 | 10 | mptex 7221 | . . . 4 ⊢ (𝑗 ∈ 𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG ‘𝑖)) ∈ V |
12 | 8, 9, 11 | fvmpt3i 7000 | . . 3 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )) |
13 | 2, 12 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )) |
14 | 1, 13 | eqtrid 2784 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 ⟨cop 4633 ↦ cmpt 5230 ‘cfv 6540 [cec 8697 ⟨“cs1 14541 ~FG cefg 19568 varFGrpcvrgp 19570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ec 8701 df-vrgp 19573 |
This theorem is referenced by: vrgpval 19629 vrgpf 19630 |
Copyright terms: Public domain | W3C validator |