Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vrgpfval | Structured version Visualization version GIF version |
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.u | . 2 ⊢ 𝑈 = (varFGrp‘𝐼) | |
2 | elex 3440 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | id 22 | . . . . 5 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
4 | fveq2 6756 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
5 | vrgpfval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
6 | 4, 5 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
7 | 6 | eceq2d 8498 | . . . . 5 ⊢ (𝑖 = 𝐼 → [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖) = [〈“〈𝑗, ∅〉”〉] ∼ ) |
8 | 3, 7 | mpteq12dv 5161 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖)) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
9 | df-vrgp 19232 | . . . 4 ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖))) | |
10 | vex 3426 | . . . . 5 ⊢ 𝑖 ∈ V | |
11 | 10 | mptex 7081 | . . . 4 ⊢ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖)) ∈ V |
12 | 8, 9, 11 | fvmpt3i 6862 | . . 3 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
13 | 2, 12 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
14 | 1, 13 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 ↦ cmpt 5153 ‘cfv 6418 [cec 8454 〈“cs1 14228 ~FG cefg 19227 varFGrpcvrgp 19229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ec 8458 df-vrgp 19232 |
This theorem is referenced by: vrgpval 19288 vrgpf 19289 |
Copyright terms: Public domain | W3C validator |