Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vrgpfval | Structured version Visualization version GIF version |
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.u | . 2 ⊢ 𝑈 = (varFGrp‘𝐼) | |
2 | elex 3450 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | id 22 | . . . . 5 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
4 | fveq2 6774 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
5 | vrgpfval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
6 | 4, 5 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
7 | 6 | eceq2d 8540 | . . . . 5 ⊢ (𝑖 = 𝐼 → [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖) = [〈“〈𝑗, ∅〉”〉] ∼ ) |
8 | 3, 7 | mpteq12dv 5165 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖)) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
9 | df-vrgp 19317 | . . . 4 ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖))) | |
10 | vex 3436 | . . . . 5 ⊢ 𝑖 ∈ V | |
11 | 10 | mptex 7099 | . . . 4 ⊢ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖)) ∈ V |
12 | 8, 9, 11 | fvmpt3i 6880 | . . 3 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
13 | 2, 12 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
14 | 1, 13 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 〈cop 4567 ↦ cmpt 5157 ‘cfv 6433 [cec 8496 〈“cs1 14300 ~FG cefg 19312 varFGrpcvrgp 19314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ec 8500 df-vrgp 19317 |
This theorem is referenced by: vrgpval 19373 vrgpf 19374 |
Copyright terms: Public domain | W3C validator |