MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpfval Structured version   Visualization version   GIF version

Theorem vrgpfval 19628
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
Distinct variable groups:   𝑗,𝐼   ,𝑗   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrgpfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.u . 2 𝑈 = (varFGrp𝐼)
2 elex 3492 . . 3 (𝐼𝑉𝐼 ∈ V)
3 id 22 . . . . 5 (𝑖 = 𝐼𝑖 = 𝐼)
4 fveq2 6888 . . . . . . 7 (𝑖 = 𝐼 → ( ~FG𝑖) = ( ~FG𝐼))
5 vrgpfval.r . . . . . . 7 = ( ~FG𝐼)
64, 5eqtr4di 2790 . . . . . 6 (𝑖 = 𝐼 → ( ~FG𝑖) = )
76eceq2d 8741 . . . . 5 (𝑖 = 𝐼 → [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖) = [⟨“⟨𝑗, ∅⟩”⟩] )
83, 7mpteq12dv 5238 . . . 4 (𝑖 = 𝐼 → (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
9 df-vrgp 19573 . . . 4 varFGrp = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)))
10 vex 3478 . . . . 5 𝑖 ∈ V
1110mptex 7221 . . . 4 (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)) ∈ V
128, 9, 11fvmpt3i 7000 . . 3 (𝐼 ∈ V → (varFGrp𝐼) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
132, 12syl 17 . 2 (𝐼𝑉 → (varFGrp𝐼) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
141, 13eqtrid 2784 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  c0 4321  cop 4633  cmpt 5230  cfv 6540  [cec 8697  ⟨“cs1 14541   ~FG cefg 19568  varFGrpcvrgp 19570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ec 8701  df-vrgp 19573
This theorem is referenced by:  vrgpval  19629  vrgpf  19630
  Copyright terms: Public domain W3C validator