![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpfval | Structured version Visualization version GIF version |
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.u | . 2 ⊢ 𝑈 = (varFGrp‘𝐼) | |
2 | elex 3509 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | id 22 | . . . . 5 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
4 | fveq2 6920 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
5 | vrgpfval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
6 | 4, 5 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
7 | 6 | eceq2d 8806 | . . . . 5 ⊢ (𝑖 = 𝐼 → [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖) = [〈“〈𝑗, ∅〉”〉] ∼ ) |
8 | 3, 7 | mpteq12dv 5257 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖)) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
9 | df-vrgp 19753 | . . . 4 ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖))) | |
10 | vex 3492 | . . . . 5 ⊢ 𝑖 ∈ V | |
11 | 10 | mptex 7260 | . . . 4 ⊢ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖)) ∈ V |
12 | 8, 9, 11 | fvmpt3i 7034 | . . 3 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
13 | 2, 12 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFGrp‘𝐼) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
14 | 1, 13 | eqtrid 2792 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ↦ cmpt 5249 ‘cfv 6573 [cec 8761 〈“cs1 14643 ~FG cefg 19748 varFGrpcvrgp 19750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ec 8765 df-vrgp 19753 |
This theorem is referenced by: vrgpval 19809 vrgpf 19810 |
Copyright terms: Public domain | W3C validator |