MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpfval Structured version   Visualization version   GIF version

Theorem vrgpfval 19372
Description: The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
Distinct variable groups:   𝑗,𝐼   ,𝑗   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrgpfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.u . 2 𝑈 = (varFGrp𝐼)
2 elex 3450 . . 3 (𝐼𝑉𝐼 ∈ V)
3 id 22 . . . . 5 (𝑖 = 𝐼𝑖 = 𝐼)
4 fveq2 6774 . . . . . . 7 (𝑖 = 𝐼 → ( ~FG𝑖) = ( ~FG𝐼))
5 vrgpfval.r . . . . . . 7 = ( ~FG𝐼)
64, 5eqtr4di 2796 . . . . . 6 (𝑖 = 𝐼 → ( ~FG𝑖) = )
76eceq2d 8540 . . . . 5 (𝑖 = 𝐼 → [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖) = [⟨“⟨𝑗, ∅⟩”⟩] )
83, 7mpteq12dv 5165 . . . 4 (𝑖 = 𝐼 → (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
9 df-vrgp 19317 . . . 4 varFGrp = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)))
10 vex 3436 . . . . 5 𝑖 ∈ V
1110mptex 7099 . . . 4 (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)) ∈ V
128, 9, 11fvmpt3i 6880 . . 3 (𝐼 ∈ V → (varFGrp𝐼) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
132, 12syl 17 . 2 (𝐼𝑉 → (varFGrp𝐼) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
141, 13eqtrid 2790 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cop 4567  cmpt 5157  cfv 6433  [cec 8496  ⟨“cs1 14300   ~FG cefg 19312  varFGrpcvrgp 19314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ec 8500  df-vrgp 19317
This theorem is referenced by:  vrgpval  19373  vrgpf  19374
  Copyright terms: Public domain W3C validator