![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for rngqiprnglin 21209. (Contributed by AV, 28-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
rng2idlring.t | ⊢ · = (.r‘𝑅) |
rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
Ref | Expression |
---|---|
rngqiprnglinlem2 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
2 | rng2idlring.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
3 | rng2idlring.j | . . . . . . . 8 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
4 | rng2idlring.u | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
5 | ringrng 20233 | . . . . . . . . 9 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Rng) |
7 | 3, 6 | eqeltrrid 2830 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
8 | 1, 2, 7 | rng2idlsubrng 21172 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) |
9 | subrngsubg 20501 | . . . . . 6 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
11 | 1, 2, 10 | 3jca 1125 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅))) |
12 | eqid 2725 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
13 | rngqiprngim.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
14 | rngqiprngim.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
15 | 14 | oveq2i 7430 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
16 | 13, 15 | eqtri 2753 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
17 | rng2idlring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
18 | rng2idlring.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
19 | eqid 2725 | . . . . 5 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
20 | 12, 16, 17, 18, 19 | qusmulrng 21189 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼)) |
21 | 11, 20 | sylan 578 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼)) |
22 | 14 | eceq2i 8766 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
23 | 14 | eceq2i 8766 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
24 | 22, 23 | oveq12i 7431 | . . 3 ⊢ ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
25 | 14 | eceq2i 8766 | . . 3 ⊢ [(𝐴 · 𝐶)] ∼ = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼) |
26 | 21, 24, 25 | 3eqtr4g 2790 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) = [(𝐴 · 𝐶)] ∼ ) |
27 | 26 | eqcomd 2731 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 [cec 8723 Basecbs 17183 ↾s cress 17212 .rcmulr 17237 /s cqus 17490 SubGrpcsubg 19083 ~QG cqg 19085 Rngcrng 20104 1rcur 20133 Ringcrg 20185 SubRngcsubrng 20494 2Idealc2idl 21156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-0g 17426 df-imas 17493 df-qus 17494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-eqg 19088 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-subrng 20495 df-lss 20828 df-sra 21070 df-rgmod 21071 df-lidl 21116 df-2idl 21157 |
This theorem is referenced by: rngqiprnglinlem3 21200 rngqiprnglin 21209 |
Copyright terms: Public domain | W3C validator |