| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for rngqiprnglin 21312. (Contributed by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| rngqiprnglinlem2 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rng2idlring.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rng2idlring.j | . . . . . . . 8 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.u | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | ringrng 20282 | . . . . . . . . 9 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 7 | 3, 6 | eqeltrrid 2846 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 8 | 1, 2, 7 | rng2idlsubrng 21275 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) |
| 9 | subrngsubg 20552 | . . . . . 6 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 11 | 1, 2, 10 | 3jca 1129 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅))) |
| 12 | eqid 2737 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 13 | rngqiprngim.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 14 | rngqiprngim.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 15 | 14 | oveq2i 7442 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 16 | 13, 15 | eqtri 2765 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 17 | rng2idlring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 18 | rng2idlring.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | eqid 2737 | . . . . 5 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 20 | 12, 16, 17, 18, 19 | qusmulrng 21292 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼)) |
| 21 | 11, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼)) |
| 22 | 14 | eceq2i 8787 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
| 23 | 14 | eceq2i 8787 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
| 24 | 22, 23 | oveq12i 7443 | . . 3 ⊢ ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
| 25 | 14 | eceq2i 8787 | . . 3 ⊢ [(𝐴 · 𝐶)] ∼ = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼) |
| 26 | 21, 24, 25 | 3eqtr4g 2802 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) = [(𝐴 · 𝐶)] ∼ ) |
| 27 | 26 | eqcomd 2743 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 [cec 8743 Basecbs 17247 ↾s cress 17274 .rcmulr 17298 /s cqus 17550 SubGrpcsubg 19138 ~QG cqg 19140 Rngcrng 20149 1rcur 20178 Ringcrg 20230 SubRngcsubrng 20545 2Idealc2idl 21259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-ec 8747 df-qs 8751 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-0g 17486 df-imas 17553 df-qus 17554 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-eqg 19143 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-subrng 20546 df-lss 20930 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-2idl 21260 |
| This theorem is referenced by: rngqiprnglinlem3 21303 rngqiprnglin 21312 |
| Copyright terms: Public domain | W3C validator |