![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for rngqiprnglin 21181. (Contributed by AV, 28-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
rngqiprngim.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngim.q | β’ π = (π /s βΌ ) |
Ref | Expression |
---|---|
rngqiprnglinlem2 | β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β [(π΄ Β· πΆ)] βΌ = ([π΄] βΌ (.rβπ)[πΆ] βΌ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | . . . . 5 β’ (π β π β Rng) | |
2 | rng2idlring.i | . . . . 5 β’ (π β πΌ β (2Idealβπ )) | |
3 | rng2idlring.j | . . . . . . . 8 β’ π½ = (π βΎs πΌ) | |
4 | rng2idlring.u | . . . . . . . . 9 β’ (π β π½ β Ring) | |
5 | ringrng 20210 | . . . . . . . . 9 β’ (π½ β Ring β π½ β Rng) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 β’ (π β π½ β Rng) |
7 | 3, 6 | eqeltrrid 2833 | . . . . . . 7 β’ (π β (π βΎs πΌ) β Rng) |
8 | 1, 2, 7 | rng2idlsubrng 21148 | . . . . . 6 β’ (π β πΌ β (SubRngβπ )) |
9 | subrngsubg 20478 | . . . . . 6 β’ (πΌ β (SubRngβπ ) β πΌ β (SubGrpβπ )) | |
10 | 8, 9 | syl 17 | . . . . 5 β’ (π β πΌ β (SubGrpβπ )) |
11 | 1, 2, 10 | 3jca 1126 | . . . 4 β’ (π β (π β Rng β§ πΌ β (2Idealβπ ) β§ πΌ β (SubGrpβπ ))) |
12 | eqid 2727 | . . . . 5 β’ (π ~QG πΌ) = (π ~QG πΌ) | |
13 | rngqiprngim.q | . . . . . 6 β’ π = (π /s βΌ ) | |
14 | rngqiprngim.g | . . . . . . 7 β’ βΌ = (π ~QG πΌ) | |
15 | 14 | oveq2i 7425 | . . . . . 6 β’ (π /s βΌ ) = (π /s (π ~QG πΌ)) |
16 | 13, 15 | eqtri 2755 | . . . . 5 β’ π = (π /s (π ~QG πΌ)) |
17 | rng2idlring.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
18 | rng2idlring.t | . . . . 5 β’ Β· = (.rβπ ) | |
19 | eqid 2727 | . . . . 5 β’ (.rβπ) = (.rβπ) | |
20 | 12, 16, 17, 18, 19 | qusmulrng 21163 | . . . 4 β’ (((π β Rng β§ πΌ β (2Idealβπ ) β§ πΌ β (SubGrpβπ )) β§ (π΄ β π΅ β§ πΆ β π΅)) β ([π΄](π ~QG πΌ)(.rβπ)[πΆ](π ~QG πΌ)) = [(π΄ Β· πΆ)](π ~QG πΌ)) |
21 | 11, 20 | sylan 579 | . . 3 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β ([π΄](π ~QG πΌ)(.rβπ)[πΆ](π ~QG πΌ)) = [(π΄ Β· πΆ)](π ~QG πΌ)) |
22 | 14 | eceq2i 8759 | . . . 4 β’ [π΄] βΌ = [π΄](π ~QG πΌ) |
23 | 14 | eceq2i 8759 | . . . 4 β’ [πΆ] βΌ = [πΆ](π ~QG πΌ) |
24 | 22, 23 | oveq12i 7426 | . . 3 β’ ([π΄] βΌ (.rβπ)[πΆ] βΌ ) = ([π΄](π ~QG πΌ)(.rβπ)[πΆ](π ~QG πΌ)) |
25 | 14 | eceq2i 8759 | . . 3 β’ [(π΄ Β· πΆ)] βΌ = [(π΄ Β· πΆ)](π ~QG πΌ) |
26 | 21, 24, 25 | 3eqtr4g 2792 | . 2 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β ([π΄] βΌ (.rβπ)[πΆ] βΌ ) = [(π΄ Β· πΆ)] βΌ ) |
27 | 26 | eqcomd 2733 | 1 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β [(π΄ Β· πΆ)] βΌ = ([π΄] βΌ (.rβπ)[πΆ] βΌ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 βcfv 6542 (class class class)co 7414 [cec 8716 Basecbs 17171 βΎs cress 17200 .rcmulr 17225 /s cqus 17478 SubGrpcsubg 19066 ~QG cqg 19068 Rngcrng 20083 1rcur 20112 Ringcrg 20164 SubRngcsubrng 20471 2Idealc2idl 21132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-0g 17414 df-imas 17481 df-qus 17482 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-sbg 18886 df-subg 19069 df-eqg 19071 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-oppr 20262 df-subrng 20472 df-lss 20805 df-sra 21047 df-rgmod 21048 df-lidl 21093 df-2idl 21133 |
This theorem is referenced by: rngqiprnglinlem3 21172 rngqiprnglin 21181 |
Copyright terms: Public domain | W3C validator |