| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for rngqiprnglin 21234. (Contributed by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| rngqiprnglinlem2 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rng2idlring.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rng2idlring.j | . . . . . . . 8 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.u | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | ringrng 20198 | . . . . . . . . 9 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 7 | 3, 6 | eqeltrrid 2836 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 8 | 1, 2, 7 | rng2idlsubrng 21197 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) |
| 9 | subrngsubg 20462 | . . . . . 6 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 11 | 1, 2, 10 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅))) |
| 12 | eqid 2731 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 13 | rngqiprngim.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 14 | rngqiprngim.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 15 | 14 | oveq2i 7352 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 16 | 13, 15 | eqtri 2754 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 17 | rng2idlring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 18 | rng2idlring.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 20 | 12, 16, 17, 18, 19 | qusmulrng 21214 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼)) |
| 21 | 11, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼)) |
| 22 | 14 | eceq2i 8659 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
| 23 | 14 | eceq2i 8659 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
| 24 | 22, 23 | oveq12i 7353 | . . 3 ⊢ ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(.r‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
| 25 | 14 | eceq2i 8659 | . . 3 ⊢ [(𝐴 · 𝐶)] ∼ = [(𝐴 · 𝐶)](𝑅 ~QG 𝐼) |
| 26 | 21, 24, 25 | 3eqtr4g 2791 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) = [(𝐴 · 𝐶)] ∼ ) |
| 27 | 26 | eqcomd 2737 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 [cec 8615 Basecbs 17115 ↾s cress 17136 .rcmulr 17157 /s cqus 17404 SubGrpcsubg 19028 ~QG cqg 19030 Rngcrng 20065 1rcur 20094 Ringcrg 20146 SubRngcsubrng 20455 2Idealc2idl 21181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-0g 17340 df-imas 17407 df-qus 17408 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-eqg 19033 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-subrng 20456 df-lss 20860 df-sra 21102 df-rgmod 21103 df-lidl 21140 df-2idl 21182 |
| This theorem is referenced by: rngqiprnglinlem3 21225 rngqiprnglin 21234 |
| Copyright terms: Public domain | W3C validator |