Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres3 Structured version   Visualization version   GIF version

Theorem eccnvepres3 38397
Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021.)
Assertion
Ref Expression
eccnvepres3 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ 𝐴) = 𝐵)

Proof of Theorem eccnvepres3
StepHypRef Expression
1 resdmres 6187 . . 3 ( E ↾ dom ( E ↾ 𝐴)) = ( E ↾ 𝐴)
21eceq2i 8673 . 2 [𝐵]( E ↾ dom ( E ↾ 𝐴)) = [𝐵]( E ↾ 𝐴)
3 eccnvepres2 38396 . 2 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ dom ( E ↾ 𝐴)) = 𝐵)
42, 3eqtr3id 2782 1 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   E cep 5520  ccnv 5620  dom cdm 5621  cres 5623  [cec 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633
This theorem is referenced by:  eldisjlem19  38981
  Copyright terms: Public domain W3C validator