Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres3 Structured version   Visualization version   GIF version

Theorem eccnvepres3 38268
Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021.)
Assertion
Ref Expression
eccnvepres3 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ 𝐴) = 𝐵)

Proof of Theorem eccnvepres3
StepHypRef Expression
1 resdmres 6254 . . 3 ( E ↾ dom ( E ↾ 𝐴)) = ( E ↾ 𝐴)
21eceq2i 8786 . 2 [𝐵]( E ↾ dom ( E ↾ 𝐴)) = [𝐵]( E ↾ 𝐴)
3 eccnvepres2 38267 . 2 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ dom ( E ↾ 𝐴)) = 𝐵)
42, 3eqtr3id 2789 1 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   E cep 5588  ccnv 5688  dom cdm 5689  cres 5691  [cec 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746
This theorem is referenced by:  eldisjlem19  38792
  Copyright terms: Public domain W3C validator