Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres3 Structured version   Visualization version   GIF version

Theorem eccnvepres3 34393
 Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021.)
Assertion
Ref Expression
eccnvepres3 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ 𝐴) = 𝐵)

Proof of Theorem eccnvepres3
StepHypRef Expression
1 resdmres 5769 . . 3 ( E ↾ dom ( E ↾ 𝐴)) = ( E ↾ 𝐴)
21eceq2i 34383 . 2 [𝐵]( E ↾ dom ( E ↾ 𝐴)) = [𝐵]( E ↾ 𝐴)
3 eccnvepres2 34392 . 2 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ dom ( E ↾ 𝐴)) = 𝐵)
42, 3syl5eqr 2819 1 (𝐵 ∈ dom ( E ↾ 𝐴) → [𝐵]( E ↾ 𝐴) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145   E cep 5161  ◡ccnv 5248  dom cdm 5249   ↾ cres 5251  [cec 7894 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-eprel 5162  df-xp 5255  df-rel 5256  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ec 7898 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator