| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres3 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021.) |
| Ref | Expression |
|---|---|
| eccnvepres3 | ⊢ (𝐵 ∈ dom (◡ E ↾ 𝐴) → [𝐵](◡ E ↾ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres 6174 | . . 3 ⊢ (◡ E ↾ dom (◡ E ↾ 𝐴)) = (◡ E ↾ 𝐴) | |
| 2 | 1 | eceq2i 8659 | . 2 ⊢ [𝐵](◡ E ↾ dom (◡ E ↾ 𝐴)) = [𝐵](◡ E ↾ 𝐴) |
| 3 | eccnvepres2 38319 | . 2 ⊢ (𝐵 ∈ dom (◡ E ↾ 𝐴) → [𝐵](◡ E ↾ dom (◡ E ↾ 𝐴)) = 𝐵) | |
| 4 | 2, 3 | eqtr3id 2780 | 1 ⊢ (𝐵 ∈ dom (◡ E ↾ 𝐴) → [𝐵](◡ E ↾ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 E cep 5510 ◡ccnv 5610 dom cdm 5611 ↾ cres 5613 [cec 8615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 |
| This theorem is referenced by: eldisjlem19 38848 |
| Copyright terms: Public domain | W3C validator |