MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1lem Structured version   Visualization version   GIF version

Theorem rngqiprngimf1lem 21211
Description: Lemma for rngqiprngimf1 21217. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
rngqiprngimf1lem ((𝜑𝐴𝐵) → (([𝐴] = (0g𝑄) ∧ ( 1 · 𝐴) = (0g𝐽)) → 𝐴 = (0g𝑅)))

Proof of Theorem rngqiprngimf1lem
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . 10 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . 11 (𝜑𝐽 ∈ Ring)
5 ringrng 20201 . . . . . . . . . . 11 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2834 . . . . . . . . 9 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21183 . . . . . . . 8 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
98adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐼 ∈ (NrmSGrp‘𝑅))
10 rngqiprngim.q . . . . . . . . 9 𝑄 = (𝑅 /s )
11 rngqiprngim.g . . . . . . . . . 10 = (𝑅 ~QG 𝐼)
1211oveq2i 7401 . . . . . . . . 9 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1310, 12eqtri 2753 . . . . . . . 8 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
14 eqid 2730 . . . . . . . 8 (0g𝑅) = (0g𝑅)
1513, 14qus0 19128 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
169, 15syl 17 . . . . . 6 ((𝜑𝐴𝐵) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
1716eqcomd 2736 . . . . 5 ((𝜑𝐴𝐵) → (0g𝑄) = [(0g𝑅)](𝑅 ~QG 𝐼))
1817eqeq2d 2741 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) ↔ [𝐴] = [(0g𝑅)](𝑅 ~QG 𝐼)))
1911eqcomi 2739 . . . . . . 7 (𝑅 ~QG 𝐼) =
2019eceq2i 8716 . . . . . 6 [(0g𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)]
2120a1i 11 . . . . 5 ((𝜑𝐴𝐵) → [(0g𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)] )
2221eqeq2d 2741 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = [(0g𝑅)](𝑅 ~QG 𝐼) ↔ [𝐴] = [(0g𝑅)] ))
23 eqcom 2737 . . . . 5 ([𝐴] = [(0g𝑅)] ↔ [(0g𝑅)] = [𝐴] )
24 rngabl 20071 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
251, 24syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
26 nsgsubg 19097 . . . . . . . 8 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
278, 26syl 17 . . . . . . 7 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2825, 27jca 511 . . . . . 6 (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)))
29 rng2idlring.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3029, 14rng0cl 20079 . . . . . . . 8 (𝑅 ∈ Rng → (0g𝑅) ∈ 𝐵)
311, 30syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ 𝐵)
3231anim1i 615 . . . . . 6 ((𝜑𝐴𝐵) → ((0g𝑅) ∈ 𝐵𝐴𝐵))
33 eqid 2730 . . . . . . 7 (-g𝑅) = (-g𝑅)
3429, 33, 11qusecsub 19772 . . . . . 6 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ((0g𝑅) ∈ 𝐵𝐴𝐵)) → ([(0g𝑅)] = [𝐴] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3528, 32, 34syl2an2r 685 . . . . 5 ((𝜑𝐴𝐵) → ([(0g𝑅)] = [𝐴] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3623, 35bitrid 283 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = [(0g𝑅)] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3718, 22, 363bitrd 305 . . 3 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
38 rnggrp 20074 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
391, 38syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
4029, 14, 33grpsubid1 18964 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐴𝐵) → (𝐴(-g𝑅)(0g𝑅)) = 𝐴)
4139, 40sylan 580 . . . . 5 ((𝜑𝐴𝐵) → (𝐴(-g𝑅)(0g𝑅)) = 𝐴)
4241eleq1d 2814 . . . 4 ((𝜑𝐴𝐵) → ((𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼𝐴𝐼))
43 eqid 2730 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
44 eqid 2730 . . . . . . . . 9 (0g𝐽) = (0g𝐽)
45 eqid 2730 . . . . . . . . 9 (.r𝐽) = (.r𝐽)
464adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ (Base‘𝐽)) → 𝐽 ∈ Ring)
47 simpr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ (Base‘𝐽)) → 𝐴 ∈ (Base‘𝐽))
48 eqid 2730 . . . . . . . . 9 (1r𝐽) = (1r𝐽)
4943, 44, 45, 46, 47, 48ring1nzdiv 20315 . . . . . . . 8 ((𝜑𝐴 ∈ (Base‘𝐽)) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) ↔ 𝐴 = (0g𝐽)))
5049biimpd 229 . . . . . . 7 ((𝜑𝐴 ∈ (Base‘𝐽)) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽)))
5150ex 412 . . . . . 6 (𝜑 → (𝐴 ∈ (Base‘𝐽) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽))))
522, 3, 432idlbas 21180 . . . . . . . 8 (𝜑 → (Base‘𝐽) = 𝐼)
5352eqcomd 2736 . . . . . . 7 (𝜑𝐼 = (Base‘𝐽))
5453eleq2d 2815 . . . . . 6 (𝜑 → (𝐴𝐼𝐴 ∈ (Base‘𝐽)))
55 rng2idlring.t . . . . . . . . . . 11 · = (.r𝑅)
563, 55ressmulr 17277 . . . . . . . . . 10 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
572, 56syl 17 . . . . . . . . 9 (𝜑· = (.r𝐽))
58 rng2idlring.1 . . . . . . . . . 10 1 = (1r𝐽)
5958a1i 11 . . . . . . . . 9 (𝜑1 = (1r𝐽))
60 eqidd 2731 . . . . . . . . 9 (𝜑𝐴 = 𝐴)
6157, 59, 60oveq123d 7411 . . . . . . . 8 (𝜑 → ( 1 · 𝐴) = ((1r𝐽)(.r𝐽)𝐴))
6261eqeq1d 2732 . . . . . . 7 (𝜑 → (( 1 · 𝐴) = (0g𝐽) ↔ ((1r𝐽)(.r𝐽)𝐴) = (0g𝐽)))
633, 14subg0 19071 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐽))
6427, 63syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g𝐽))
6564eqeq2d 2741 . . . . . . 7 (𝜑 → (𝐴 = (0g𝑅) ↔ 𝐴 = (0g𝐽)))
6662, 65imbi12d 344 . . . . . 6 (𝜑 → ((( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅)) ↔ (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽))))
6751, 54, 663imtr4d 294 . . . . 5 (𝜑 → (𝐴𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
6867adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝐴𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
6942, 68sylbid 240 . . 3 ((𝜑𝐴𝐵) → ((𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
7037, 69sylbid 240 . 2 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
7170impd 410 1 ((𝜑𝐴𝐵) → (([𝐴] = (0g𝑄) ∧ ( 1 · 𝐴) = (0g𝐽)) → 𝐴 = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  [cec 8672  Basecbs 17186  s cress 17207  .rcmulr 17228  0gc0g 17409   /s cqus 17475  Grpcgrp 18872  -gcsg 18874  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  Abelcabl 19718  Rngcrng 20068  1rcur 20097  Ringcrg 20149  2Idealc2idl 21166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-nsg 19063  df-eqg 19064  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-subrng 20462  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-2idl 21167
This theorem is referenced by:  rngqiprngimf1  21217
  Copyright terms: Public domain W3C validator