MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1lem Structured version   Visualization version   GIF version

Theorem rngqiprngimf1lem 21166
Description: Lemma for rngqiprngimf1 21172. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
rngqiprngimf1lem ((𝜑𝐴𝐵) → (([𝐴] = (0g𝑄) ∧ ( 1 · 𝐴) = (0g𝐽)) → 𝐴 = (0g𝑅)))

Proof of Theorem rngqiprngimf1lem
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . 10 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . 11 (𝜑𝐽 ∈ Ring)
5 ringrng 20203 . . . . . . . . . . 11 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2833 . . . . . . . . 9 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21142 . . . . . . . 8 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
98adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐼 ∈ (NrmSGrp‘𝑅))
10 rngqiprngim.q . . . . . . . . 9 𝑄 = (𝑅 /s )
11 rngqiprngim.g . . . . . . . . . 10 = (𝑅 ~QG 𝐼)
1211oveq2i 7425 . . . . . . . . 9 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1310, 12eqtri 2755 . . . . . . . 8 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
14 eqid 2727 . . . . . . . 8 (0g𝑅) = (0g𝑅)
1513, 14qus0 19128 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
169, 15syl 17 . . . . . 6 ((𝜑𝐴𝐵) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
1716eqcomd 2733 . . . . 5 ((𝜑𝐴𝐵) → (0g𝑄) = [(0g𝑅)](𝑅 ~QG 𝐼))
1817eqeq2d 2738 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) ↔ [𝐴] = [(0g𝑅)](𝑅 ~QG 𝐼)))
1911eqcomi 2736 . . . . . . 7 (𝑅 ~QG 𝐼) =
2019eceq2i 8757 . . . . . 6 [(0g𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)]
2120a1i 11 . . . . 5 ((𝜑𝐴𝐵) → [(0g𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)] )
2221eqeq2d 2738 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = [(0g𝑅)](𝑅 ~QG 𝐼) ↔ [𝐴] = [(0g𝑅)] ))
23 eqcom 2734 . . . . 5 ([𝐴] = [(0g𝑅)] ↔ [(0g𝑅)] = [𝐴] )
24 rngabl 20079 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
251, 24syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
26 nsgsubg 19097 . . . . . . . 8 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
278, 26syl 17 . . . . . . 7 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2825, 27jca 511 . . . . . 6 (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)))
29 rng2idlring.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3029, 14rng0cl 20087 . . . . . . . 8 (𝑅 ∈ Rng → (0g𝑅) ∈ 𝐵)
311, 30syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ 𝐵)
3231anim1i 614 . . . . . 6 ((𝜑𝐴𝐵) → ((0g𝑅) ∈ 𝐵𝐴𝐵))
33 eqid 2727 . . . . . . 7 (-g𝑅) = (-g𝑅)
3429, 33, 11qusecsub 19774 . . . . . 6 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ((0g𝑅) ∈ 𝐵𝐴𝐵)) → ([(0g𝑅)] = [𝐴] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3528, 32, 34syl2an2r 684 . . . . 5 ((𝜑𝐴𝐵) → ([(0g𝑅)] = [𝐴] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3623, 35bitrid 283 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = [(0g𝑅)] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3718, 22, 363bitrd 305 . . 3 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
38 rnggrp 20082 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
391, 38syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
4029, 14, 33grpsubid1 18965 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐴𝐵) → (𝐴(-g𝑅)(0g𝑅)) = 𝐴)
4139, 40sylan 579 . . . . 5 ((𝜑𝐴𝐵) → (𝐴(-g𝑅)(0g𝑅)) = 𝐴)
4241eleq1d 2813 . . . 4 ((𝜑𝐴𝐵) → ((𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼𝐴𝐼))
43 eqid 2727 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
44 eqid 2727 . . . . . . . . 9 (0g𝐽) = (0g𝐽)
45 eqid 2727 . . . . . . . . 9 (.r𝐽) = (.r𝐽)
464adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ (Base‘𝐽)) → 𝐽 ∈ Ring)
47 simpr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ (Base‘𝐽)) → 𝐴 ∈ (Base‘𝐽))
48 eqid 2727 . . . . . . . . 9 (1r𝐽) = (1r𝐽)
4943, 44, 45, 46, 47, 48ring1nzdiv 20320 . . . . . . . 8 ((𝜑𝐴 ∈ (Base‘𝐽)) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) ↔ 𝐴 = (0g𝐽)))
5049biimpd 228 . . . . . . 7 ((𝜑𝐴 ∈ (Base‘𝐽)) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽)))
5150ex 412 . . . . . 6 (𝜑 → (𝐴 ∈ (Base‘𝐽) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽))))
522, 3, 432idlbas 21139 . . . . . . . 8 (𝜑 → (Base‘𝐽) = 𝐼)
5352eqcomd 2733 . . . . . . 7 (𝜑𝐼 = (Base‘𝐽))
5453eleq2d 2814 . . . . . 6 (𝜑 → (𝐴𝐼𝐴 ∈ (Base‘𝐽)))
55 rng2idlring.t . . . . . . . . . . 11 · = (.r𝑅)
563, 55ressmulr 17273 . . . . . . . . . 10 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
572, 56syl 17 . . . . . . . . 9 (𝜑· = (.r𝐽))
58 rng2idlring.1 . . . . . . . . . 10 1 = (1r𝐽)
5958a1i 11 . . . . . . . . 9 (𝜑1 = (1r𝐽))
60 eqidd 2728 . . . . . . . . 9 (𝜑𝐴 = 𝐴)
6157, 59, 60oveq123d 7435 . . . . . . . 8 (𝜑 → ( 1 · 𝐴) = ((1r𝐽)(.r𝐽)𝐴))
6261eqeq1d 2729 . . . . . . 7 (𝜑 → (( 1 · 𝐴) = (0g𝐽) ↔ ((1r𝐽)(.r𝐽)𝐴) = (0g𝐽)))
633, 14subg0 19071 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐽))
6427, 63syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g𝐽))
6564eqeq2d 2738 . . . . . . 7 (𝜑 → (𝐴 = (0g𝑅) ↔ 𝐴 = (0g𝐽)))
6662, 65imbi12d 344 . . . . . 6 (𝜑 → ((( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅)) ↔ (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽))))
6751, 54, 663imtr4d 294 . . . . 5 (𝜑 → (𝐴𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
6867adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝐴𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
6942, 68sylbid 239 . . 3 ((𝜑𝐴𝐵) → ((𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
7037, 69sylbid 239 . 2 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
7170impd 410 1 ((𝜑𝐴𝐵) → (([𝐴] = (0g𝑄) ∧ ( 1 · 𝐴) = (0g𝐽)) → 𝐴 = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cfv 6542  (class class class)co 7414  [cec 8714  Basecbs 17165  s cress 17194  .rcmulr 17219  0gc0g 17406   /s cqus 17472  Grpcgrp 18875  -gcsg 18877  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  Abelcabl 19720  Rngcrng 20076  1rcur 20105  Ringcrg 20157  2Idealc2idl 21125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-ec 8718  df-qs 8722  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-fz 13503  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-0g 17408  df-imas 17475  df-qus 17476  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-grp 18878  df-minusg 18879  df-sbg 18880  df-subg 19062  df-nsg 19063  df-eqg 19064  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20255  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-subrng 20465  df-lss 20798  df-sra 21040  df-rgmod 21041  df-lidl 21086  df-2idl 21126
This theorem is referenced by:  rngqiprngimf1  21172
  Copyright terms: Public domain W3C validator