Proof of Theorem rngqiprngimf1lem
| Step | Hyp | Ref
| Expression |
| 1 | | rng2idlring.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Rng) |
| 2 | | rng2idlring.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| 3 | | rng2idlring.j |
. . . . . . . . . 10
⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| 4 | | rng2idlring.u |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ Ring) |
| 5 | | ringrng 20282 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ Rng) |
| 7 | 3, 6 | eqeltrrid 2846 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 8 | 1, 2, 7 | rng2idlnsg 21276 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 10 | | rngqiprngim.q |
. . . . . . . . 9
⊢ 𝑄 = (𝑅 /s ∼ ) |
| 11 | | rngqiprngim.g |
. . . . . . . . . 10
⊢ ∼ =
(𝑅 ~QG
𝐼) |
| 12 | 11 | oveq2i 7442 |
. . . . . . . . 9
⊢ (𝑅 /s ∼ ) =
(𝑅 /s
(𝑅 ~QG
𝐼)) |
| 13 | 10, 12 | eqtri 2765 |
. . . . . . . 8
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 14 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 15 | 13, 14 | qus0 19207 |
. . . . . . 7
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
| 16 | 9, 15 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → [(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
| 17 | 16 | eqcomd 2743 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (0g‘𝑄) = [(0g‘𝑅)](𝑅 ~QG 𝐼)) |
| 18 | 17 | eqeq2d 2748 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ([𝐴] ∼ =
(0g‘𝑄)
↔ [𝐴] ∼ =
[(0g‘𝑅)](𝑅 ~QG 𝐼))) |
| 19 | 11 | eqcomi 2746 |
. . . . . . 7
⊢ (𝑅 ~QG 𝐼) = ∼ |
| 20 | 19 | eceq2i 8787 |
. . . . . 6
⊢
[(0g‘𝑅)](𝑅 ~QG 𝐼) = [(0g‘𝑅)] ∼ |
| 21 | 20 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → [(0g‘𝑅)](𝑅 ~QG 𝐼) = [(0g‘𝑅)] ∼ ) |
| 22 | 21 | eqeq2d 2748 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ([𝐴] ∼ =
[(0g‘𝑅)](𝑅 ~QG 𝐼) ↔ [𝐴] ∼ =
[(0g‘𝑅)]
∼
)) |
| 23 | | eqcom 2744 |
. . . . 5
⊢ ([𝐴] ∼ =
[(0g‘𝑅)]
∼
↔ [(0g‘𝑅)] ∼ = [𝐴] ∼ ) |
| 24 | | rngabl 20152 |
. . . . . . . 8
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 25 | 1, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Abel) |
| 26 | | nsgsubg 19176 |
. . . . . . . 8
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 27 | 8, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 28 | 25, 27 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅))) |
| 29 | | rng2idlring.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
| 30 | 29, 14 | rng0cl 20160 |
. . . . . . . 8
⊢ (𝑅 ∈ Rng →
(0g‘𝑅)
∈ 𝐵) |
| 31 | 1, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑅) ∈ 𝐵) |
| 32 | 31 | anim1i 615 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ((0g‘𝑅) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) |
| 33 | | eqid 2737 |
. . . . . . 7
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 34 | 29, 33, 11 | qusecsub 19853 |
. . . . . 6
⊢ (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧
((0g‘𝑅)
∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) → ([(0g‘𝑅)] ∼ = [𝐴] ∼ ↔ (𝐴(-g‘𝑅)(0g‘𝑅)) ∈ 𝐼)) |
| 35 | 28, 32, 34 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ([(0g‘𝑅)] ∼ = [𝐴] ∼ ↔ (𝐴(-g‘𝑅)(0g‘𝑅)) ∈ 𝐼)) |
| 36 | 23, 35 | bitrid 283 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ([𝐴] ∼ =
[(0g‘𝑅)]
∼
↔ (𝐴(-g‘𝑅)(0g‘𝑅)) ∈ 𝐼)) |
| 37 | 18, 22, 36 | 3bitrd 305 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ([𝐴] ∼ =
(0g‘𝑄)
↔ (𝐴(-g‘𝑅)(0g‘𝑅)) ∈ 𝐼)) |
| 38 | | rnggrp 20155 |
. . . . . . 7
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| 39 | 1, 38 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 40 | 29, 14, 33 | grpsubid1 19043 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐴(-g‘𝑅)(0g‘𝑅)) = 𝐴) |
| 41 | 39, 40 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐴(-g‘𝑅)(0g‘𝑅)) = 𝐴) |
| 42 | 41 | eleq1d 2826 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ((𝐴(-g‘𝑅)(0g‘𝑅)) ∈ 𝐼 ↔ 𝐴 ∈ 𝐼)) |
| 43 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝐽) =
(Base‘𝐽) |
| 44 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘𝐽) = (0g‘𝐽) |
| 45 | | eqid 2737 |
. . . . . . . . 9
⊢
(.r‘𝐽) = (.r‘𝐽) |
| 46 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (Base‘𝐽)) → 𝐽 ∈ Ring) |
| 47 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (Base‘𝐽)) → 𝐴 ∈ (Base‘𝐽)) |
| 48 | | eqid 2737 |
. . . . . . . . 9
⊢
(1r‘𝐽) = (1r‘𝐽) |
| 49 | 43, 44, 45, 46, 47, 48 | ring1nzdiv 20399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (Base‘𝐽)) → (((1r‘𝐽)(.r‘𝐽)𝐴) = (0g‘𝐽) ↔ 𝐴 = (0g‘𝐽))) |
| 50 | 49 | biimpd 229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (Base‘𝐽)) → (((1r‘𝐽)(.r‘𝐽)𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝐽))) |
| 51 | 50 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ (Base‘𝐽) → (((1r‘𝐽)(.r‘𝐽)𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝐽)))) |
| 52 | 2, 3, 43 | 2idlbas 21273 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 53 | 52 | eqcomd 2743 |
. . . . . . 7
⊢ (𝜑 → 𝐼 = (Base‘𝐽)) |
| 54 | 53 | eleq2d 2827 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ (Base‘𝐽))) |
| 55 | | rng2idlring.t |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
| 56 | 3, 55 | ressmulr 17351 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (2Ideal‘𝑅) → · =
(.r‘𝐽)) |
| 57 | 2, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → · =
(.r‘𝐽)) |
| 58 | | rng2idlring.1 |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝐽) |
| 59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 1 =
(1r‘𝐽)) |
| 60 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = 𝐴) |
| 61 | 57, 59, 60 | oveq123d 7452 |
. . . . . . . 8
⊢ (𝜑 → ( 1 · 𝐴) = ((1r‘𝐽)(.r‘𝐽)𝐴)) |
| 62 | 61 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝜑 → (( 1 · 𝐴) = (0g‘𝐽) ↔ ((1r‘𝐽)(.r‘𝐽)𝐴) = (0g‘𝐽))) |
| 63 | 3, 14 | subg0 19150 |
. . . . . . . . 9
⊢ (𝐼 ∈ (SubGrp‘𝑅) →
(0g‘𝑅) =
(0g‘𝐽)) |
| 64 | 27, 63 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐽)) |
| 65 | 64 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝜑 → (𝐴 = (0g‘𝑅) ↔ 𝐴 = (0g‘𝐽))) |
| 66 | 62, 65 | imbi12d 344 |
. . . . . 6
⊢ (𝜑 → ((( 1 · 𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝑅)) ↔ (((1r‘𝐽)(.r‘𝐽)𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝐽)))) |
| 67 | 51, 54, 66 | 3imtr4d 294 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ 𝐼 → (( 1 · 𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝑅)))) |
| 68 | 67 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐼 → (( 1 · 𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝑅)))) |
| 69 | 42, 68 | sylbid 240 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ((𝐴(-g‘𝑅)(0g‘𝑅)) ∈ 𝐼 → (( 1 · 𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝑅)))) |
| 70 | 37, 69 | sylbid 240 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ([𝐴] ∼ =
(0g‘𝑄)
→ (( 1 · 𝐴) = (0g‘𝐽) → 𝐴 = (0g‘𝑅)))) |
| 71 | 70 | impd 410 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (([𝐴] ∼ =
(0g‘𝑄)
∧ ( 1
·
𝐴) =
(0g‘𝐽))
→ 𝐴 =
(0g‘𝑅))) |