Step | Hyp | Ref
| Expression |
1 | | rng2idlring.r |
. . . . . . . . 9
β’ (π β π
β Rng) |
2 | | rng2idlring.i |
. . . . . . . . 9
β’ (π β πΌ β (2Idealβπ
)) |
3 | | rng2idlring.j |
. . . . . . . . . 10
β’ π½ = (π
βΎs πΌ) |
4 | | rng2idlring.u |
. . . . . . . . . . 11
β’ (π β π½ β Ring) |
5 | | ringrng 46641 |
. . . . . . . . . . 11
β’ (π½ β Ring β π½ β Rng) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
β’ (π β π½ β Rng) |
7 | 3, 6 | eqeltrrid 2838 |
. . . . . . . . 9
β’ (π β (π
βΎs πΌ) β Rng) |
8 | 1, 2, 7 | rng2idlnsg 46742 |
. . . . . . . 8
β’ (π β πΌ β (NrmSGrpβπ
)) |
9 | 8 | adantr 481 |
. . . . . . 7
β’ ((π β§ π΄ β π΅) β πΌ β (NrmSGrpβπ
)) |
10 | | rngqiprngim.q |
. . . . . . . . 9
β’ π = (π
/s βΌ ) |
11 | | rngqiprngim.g |
. . . . . . . . . 10
β’ βΌ =
(π
~QG
πΌ) |
12 | 11 | oveq2i 7416 |
. . . . . . . . 9
β’ (π
/s βΌ ) =
(π
/s
(π
~QG
πΌ)) |
13 | 10, 12 | eqtri 2760 |
. . . . . . . 8
β’ π = (π
/s (π
~QG πΌ)) |
14 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ
) = (0gβπ
) |
15 | 13, 14 | qus0 19062 |
. . . . . . 7
β’ (πΌ β (NrmSGrpβπ
) β
[(0gβπ
)](π
~QG πΌ) = (0gβπ)) |
16 | 9, 15 | syl 17 |
. . . . . 6
β’ ((π β§ π΄ β π΅) β [(0gβπ
)](π
~QG πΌ) = (0gβπ)) |
17 | 16 | eqcomd 2738 |
. . . . 5
β’ ((π β§ π΄ β π΅) β (0gβπ) = [(0gβπ
)](π
~QG πΌ)) |
18 | 17 | eqeq2d 2743 |
. . . 4
β’ ((π β§ π΄ β π΅) β ([π΄] βΌ =
(0gβπ)
β [π΄] βΌ =
[(0gβπ
)](π
~QG πΌ))) |
19 | 11 | eqcomi 2741 |
. . . . . . 7
β’ (π
~QG πΌ) = βΌ |
20 | 19 | eceq2i 8740 |
. . . . . 6
β’
[(0gβπ
)](π
~QG πΌ) = [(0gβπ
)] βΌ |
21 | 20 | a1i 11 |
. . . . 5
β’ ((π β§ π΄ β π΅) β [(0gβπ
)](π
~QG πΌ) = [(0gβπ
)] βΌ ) |
22 | 21 | eqeq2d 2743 |
. . . 4
β’ ((π β§ π΄ β π΅) β ([π΄] βΌ =
[(0gβπ
)](π
~QG πΌ) β [π΄] βΌ =
[(0gβπ
)]
βΌ
)) |
23 | | eqcom 2739 |
. . . . 5
β’ ([π΄] βΌ =
[(0gβπ
)]
βΌ
β [(0gβπ
)] βΌ = [π΄] βΌ ) |
24 | | rngabl 46637 |
. . . . . . . 8
β’ (π
β Rng β π
β Abel) |
25 | 1, 24 | syl 17 |
. . . . . . 7
β’ (π β π
β Abel) |
26 | | nsgsubg 19032 |
. . . . . . . 8
β’ (πΌ β (NrmSGrpβπ
) β πΌ β (SubGrpβπ
)) |
27 | 8, 26 | syl 17 |
. . . . . . 7
β’ (π β πΌ β (SubGrpβπ
)) |
28 | 25, 27 | jca 512 |
. . . . . 6
β’ (π β (π
β Abel β§ πΌ β (SubGrpβπ
))) |
29 | | rng2idlring.b |
. . . . . . . . 9
β’ π΅ = (Baseβπ
) |
30 | 29, 14 | rng0cl 46648 |
. . . . . . . 8
β’ (π
β Rng β
(0gβπ
)
β π΅) |
31 | 1, 30 | syl 17 |
. . . . . . 7
β’ (π β (0gβπ
) β π΅) |
32 | 31 | anim1i 615 |
. . . . . 6
β’ ((π β§ π΄ β π΅) β ((0gβπ
) β π΅ β§ π΄ β π΅)) |
33 | | eqid 2732 |
. . . . . . 7
β’
(-gβπ
) = (-gβπ
) |
34 | 29, 33, 11 | qusecsub 19697 |
. . . . . 6
β’ (((π
β Abel β§ πΌ β (SubGrpβπ
)) β§
((0gβπ
)
β π΅ β§ π΄ β π΅)) β ([(0gβπ
)] βΌ = [π΄] βΌ β (π΄(-gβπ
)(0gβπ
)) β πΌ)) |
35 | 28, 32, 34 | syl2an2r 683 |
. . . . 5
β’ ((π β§ π΄ β π΅) β ([(0gβπ
)] βΌ = [π΄] βΌ β (π΄(-gβπ
)(0gβπ
)) β πΌ)) |
36 | 23, 35 | bitrid 282 |
. . . 4
β’ ((π β§ π΄ β π΅) β ([π΄] βΌ =
[(0gβπ
)]
βΌ
β (π΄(-gβπ
)(0gβπ
)) β πΌ)) |
37 | 18, 22, 36 | 3bitrd 304 |
. . 3
β’ ((π β§ π΄ β π΅) β ([π΄] βΌ =
(0gβπ)
β (π΄(-gβπ
)(0gβπ
)) β πΌ)) |
38 | | rnggrp 46640 |
. . . . . . 7
β’ (π
β Rng β π
β Grp) |
39 | 1, 38 | syl 17 |
. . . . . 6
β’ (π β π
β Grp) |
40 | 29, 14, 33 | grpsubid1 18904 |
. . . . . 6
β’ ((π
β Grp β§ π΄ β π΅) β (π΄(-gβπ
)(0gβπ
)) = π΄) |
41 | 39, 40 | sylan 580 |
. . . . 5
β’ ((π β§ π΄ β π΅) β (π΄(-gβπ
)(0gβπ
)) = π΄) |
42 | 41 | eleq1d 2818 |
. . . 4
β’ ((π β§ π΄ β π΅) β ((π΄(-gβπ
)(0gβπ
)) β πΌ β π΄ β πΌ)) |
43 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ½) =
(Baseβπ½) |
44 | | eqid 2732 |
. . . . . . . . 9
β’
(0gβπ½) = (0gβπ½) |
45 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ½) = (.rβπ½) |
46 | 4 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π΄ β (Baseβπ½)) β π½ β Ring) |
47 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π΄ β (Baseβπ½)) β π΄ β (Baseβπ½)) |
48 | | eqid 2732 |
. . . . . . . . 9
β’
(1rβπ½) = (1rβπ½) |
49 | 43, 44, 45, 46, 47, 48 | ring1nzdiv 20205 |
. . . . . . . 8
β’ ((π β§ π΄ β (Baseβπ½)) β (((1rβπ½)(.rβπ½)π΄) = (0gβπ½) β π΄ = (0gβπ½))) |
50 | 49 | biimpd 228 |
. . . . . . 7
β’ ((π β§ π΄ β (Baseβπ½)) β (((1rβπ½)(.rβπ½)π΄) = (0gβπ½) β π΄ = (0gβπ½))) |
51 | 50 | ex 413 |
. . . . . 6
β’ (π β (π΄ β (Baseβπ½) β (((1rβπ½)(.rβπ½)π΄) = (0gβπ½) β π΄ = (0gβπ½)))) |
52 | 2, 3, 43 | 2idlbas 20861 |
. . . . . . . 8
β’ (π β (Baseβπ½) = πΌ) |
53 | 52 | eqcomd 2738 |
. . . . . . 7
β’ (π β πΌ = (Baseβπ½)) |
54 | 53 | eleq2d 2819 |
. . . . . 6
β’ (π β (π΄ β πΌ β π΄ β (Baseβπ½))) |
55 | | rng2idlring.t |
. . . . . . . . . . 11
β’ Β· =
(.rβπ
) |
56 | 3, 55 | ressmulr 17248 |
. . . . . . . . . 10
β’ (πΌ β (2Idealβπ
) β Β· =
(.rβπ½)) |
57 | 2, 56 | syl 17 |
. . . . . . . . 9
β’ (π β Β· =
(.rβπ½)) |
58 | | rng2idlring.1 |
. . . . . . . . . 10
β’ 1 =
(1rβπ½) |
59 | 58 | a1i 11 |
. . . . . . . . 9
β’ (π β 1 =
(1rβπ½)) |
60 | | eqidd 2733 |
. . . . . . . . 9
β’ (π β π΄ = π΄) |
61 | 57, 59, 60 | oveq123d 7426 |
. . . . . . . 8
β’ (π β ( 1 Β· π΄) = ((1rβπ½)(.rβπ½)π΄)) |
62 | 61 | eqeq1d 2734 |
. . . . . . 7
β’ (π β (( 1 Β· π΄) = (0gβπ½) β ((1rβπ½)(.rβπ½)π΄) = (0gβπ½))) |
63 | 3, 14 | subg0 19006 |
. . . . . . . . 9
β’ (πΌ β (SubGrpβπ
) β
(0gβπ
) =
(0gβπ½)) |
64 | 27, 63 | syl 17 |
. . . . . . . 8
β’ (π β (0gβπ
) = (0gβπ½)) |
65 | 64 | eqeq2d 2743 |
. . . . . . 7
β’ (π β (π΄ = (0gβπ
) β π΄ = (0gβπ½))) |
66 | 62, 65 | imbi12d 344 |
. . . . . 6
β’ (π β ((( 1 Β· π΄) = (0gβπ½) β π΄ = (0gβπ
)) β (((1rβπ½)(.rβπ½)π΄) = (0gβπ½) β π΄ = (0gβπ½)))) |
67 | 51, 54, 66 | 3imtr4d 293 |
. . . . 5
β’ (π β (π΄ β πΌ β (( 1 Β· π΄) = (0gβπ½) β π΄ = (0gβπ
)))) |
68 | 67 | adantr 481 |
. . . 4
β’ ((π β§ π΄ β π΅) β (π΄ β πΌ β (( 1 Β· π΄) = (0gβπ½) β π΄ = (0gβπ
)))) |
69 | 42, 68 | sylbid 239 |
. . 3
β’ ((π β§ π΄ β π΅) β ((π΄(-gβπ
)(0gβπ
)) β πΌ β (( 1 Β· π΄) = (0gβπ½) β π΄ = (0gβπ
)))) |
70 | 37, 69 | sylbid 239 |
. 2
β’ ((π β§ π΄ β π΅) β ([π΄] βΌ =
(0gβπ)
β (( 1 Β· π΄) = (0gβπ½) β π΄ = (0gβπ
)))) |
71 | 70 | impd 411 |
1
β’ ((π β§ π΄ β π΅) β (([π΄] βΌ =
(0gβπ)
β§ ( 1
Β·
π΄) =
(0gβπ½))
β π΄ =
(0gβπ
))) |