MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1lem Structured version   Visualization version   GIF version

Theorem rngqiprngimf1lem 21180
Description: Lemma for rngqiprngimf1 21186. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
rngqiprngimf1lem ((𝜑𝐴𝐵) → (([𝐴] = (0g𝑄) ∧ ( 1 · 𝐴) = (0g𝐽)) → 𝐴 = (0g𝑅)))

Proof of Theorem rngqiprngimf1lem
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . 10 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . 11 (𝜑𝐽 ∈ Ring)
5 ringrng 20170 . . . . . . . . . . 11 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2833 . . . . . . . . 9 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21152 . . . . . . . 8 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
98adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐼 ∈ (NrmSGrp‘𝑅))
10 rngqiprngim.q . . . . . . . . 9 𝑄 = (𝑅 /s )
11 rngqiprngim.g . . . . . . . . . 10 = (𝑅 ~QG 𝐼)
1211oveq2i 7380 . . . . . . . . 9 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1310, 12eqtri 2752 . . . . . . . 8 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
14 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
1513, 14qus0 19097 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
169, 15syl 17 . . . . . 6 ((𝜑𝐴𝐵) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
1716eqcomd 2735 . . . . 5 ((𝜑𝐴𝐵) → (0g𝑄) = [(0g𝑅)](𝑅 ~QG 𝐼))
1817eqeq2d 2740 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) ↔ [𝐴] = [(0g𝑅)](𝑅 ~QG 𝐼)))
1911eqcomi 2738 . . . . . . 7 (𝑅 ~QG 𝐼) =
2019eceq2i 8690 . . . . . 6 [(0g𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)]
2120a1i 11 . . . . 5 ((𝜑𝐴𝐵) → [(0g𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)] )
2221eqeq2d 2740 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = [(0g𝑅)](𝑅 ~QG 𝐼) ↔ [𝐴] = [(0g𝑅)] ))
23 eqcom 2736 . . . . 5 ([𝐴] = [(0g𝑅)] ↔ [(0g𝑅)] = [𝐴] )
24 rngabl 20040 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
251, 24syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
26 nsgsubg 19066 . . . . . . . 8 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
278, 26syl 17 . . . . . . 7 (𝜑𝐼 ∈ (SubGrp‘𝑅))
2825, 27jca 511 . . . . . 6 (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)))
29 rng2idlring.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3029, 14rng0cl 20048 . . . . . . . 8 (𝑅 ∈ Rng → (0g𝑅) ∈ 𝐵)
311, 30syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ 𝐵)
3231anim1i 615 . . . . . 6 ((𝜑𝐴𝐵) → ((0g𝑅) ∈ 𝐵𝐴𝐵))
33 eqid 2729 . . . . . . 7 (-g𝑅) = (-g𝑅)
3429, 33, 11qusecsub 19741 . . . . . 6 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ((0g𝑅) ∈ 𝐵𝐴𝐵)) → ([(0g𝑅)] = [𝐴] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3528, 32, 34syl2an2r 685 . . . . 5 ((𝜑𝐴𝐵) → ([(0g𝑅)] = [𝐴] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3623, 35bitrid 283 . . . 4 ((𝜑𝐴𝐵) → ([𝐴] = [(0g𝑅)] ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
3718, 22, 363bitrd 305 . . 3 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) ↔ (𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼))
38 rnggrp 20043 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
391, 38syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
4029, 14, 33grpsubid1 18933 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐴𝐵) → (𝐴(-g𝑅)(0g𝑅)) = 𝐴)
4139, 40sylan 580 . . . . 5 ((𝜑𝐴𝐵) → (𝐴(-g𝑅)(0g𝑅)) = 𝐴)
4241eleq1d 2813 . . . 4 ((𝜑𝐴𝐵) → ((𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼𝐴𝐼))
43 eqid 2729 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
44 eqid 2729 . . . . . . . . 9 (0g𝐽) = (0g𝐽)
45 eqid 2729 . . . . . . . . 9 (.r𝐽) = (.r𝐽)
464adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ (Base‘𝐽)) → 𝐽 ∈ Ring)
47 simpr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ (Base‘𝐽)) → 𝐴 ∈ (Base‘𝐽))
48 eqid 2729 . . . . . . . . 9 (1r𝐽) = (1r𝐽)
4943, 44, 45, 46, 47, 48ring1nzdiv 20284 . . . . . . . 8 ((𝜑𝐴 ∈ (Base‘𝐽)) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) ↔ 𝐴 = (0g𝐽)))
5049biimpd 229 . . . . . . 7 ((𝜑𝐴 ∈ (Base‘𝐽)) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽)))
5150ex 412 . . . . . 6 (𝜑 → (𝐴 ∈ (Base‘𝐽) → (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽))))
522, 3, 432idlbas 21149 . . . . . . . 8 (𝜑 → (Base‘𝐽) = 𝐼)
5352eqcomd 2735 . . . . . . 7 (𝜑𝐼 = (Base‘𝐽))
5453eleq2d 2814 . . . . . 6 (𝜑 → (𝐴𝐼𝐴 ∈ (Base‘𝐽)))
55 rng2idlring.t . . . . . . . . . . 11 · = (.r𝑅)
563, 55ressmulr 17246 . . . . . . . . . 10 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
572, 56syl 17 . . . . . . . . 9 (𝜑· = (.r𝐽))
58 rng2idlring.1 . . . . . . . . . 10 1 = (1r𝐽)
5958a1i 11 . . . . . . . . 9 (𝜑1 = (1r𝐽))
60 eqidd 2730 . . . . . . . . 9 (𝜑𝐴 = 𝐴)
6157, 59, 60oveq123d 7390 . . . . . . . 8 (𝜑 → ( 1 · 𝐴) = ((1r𝐽)(.r𝐽)𝐴))
6261eqeq1d 2731 . . . . . . 7 (𝜑 → (( 1 · 𝐴) = (0g𝐽) ↔ ((1r𝐽)(.r𝐽)𝐴) = (0g𝐽)))
633, 14subg0 19040 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐽))
6427, 63syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g𝐽))
6564eqeq2d 2740 . . . . . . 7 (𝜑 → (𝐴 = (0g𝑅) ↔ 𝐴 = (0g𝐽)))
6662, 65imbi12d 344 . . . . . 6 (𝜑 → ((( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅)) ↔ (((1r𝐽)(.r𝐽)𝐴) = (0g𝐽) → 𝐴 = (0g𝐽))))
6751, 54, 663imtr4d 294 . . . . 5 (𝜑 → (𝐴𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
6867adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝐴𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
6942, 68sylbid 240 . . 3 ((𝜑𝐴𝐵) → ((𝐴(-g𝑅)(0g𝑅)) ∈ 𝐼 → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
7037, 69sylbid 240 . 2 ((𝜑𝐴𝐵) → ([𝐴] = (0g𝑄) → (( 1 · 𝐴) = (0g𝐽) → 𝐴 = (0g𝑅))))
7170impd 410 1 ((𝜑𝐴𝐵) → (([𝐴] = (0g𝑄) ∧ ( 1 · 𝐴) = (0g𝐽)) → 𝐴 = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  [cec 8646  Basecbs 17155  s cress 17176  .rcmulr 17197  0gc0g 17378   /s cqus 17444  Grpcgrp 18841  -gcsg 18843  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030  Abelcabl 19687  Rngcrng 20037  1rcur 20066  Ringcrg 20118  2Idealc2idl 21135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-nsg 19032  df-eqg 19033  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-subrng 20431  df-lss 20814  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-2idl 21136
This theorem is referenced by:  rngqiprngimf1  21186
  Copyright terms: Public domain W3C validator