| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecqusaddd | Structured version Visualization version GIF version | ||
| Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| ecqusaddd.i | ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| ecqusaddd.b | ⊢ 𝐵 = (Base‘𝑅) |
| ecqusaddd.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| ecqusaddd.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| ecqusaddd | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqusaddd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) |
| 3 | 3anass 1094 | . . . . 5 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
| 4 | 2, 3 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) |
| 5 | ecqusaddd.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 6 | ecqusaddd.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 7 | 6 | oveq2i 7416 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 8 | 5, 7 | eqtri 2758 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 9 | ecqusaddd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | eqid 2735 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 11 | eqid 2735 | . . . . 5 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
| 12 | 8, 9, 10, 11 | qusadd 19171 | . . . 4 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
| 13 | 4, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
| 14 | 6 | eceq2i 8761 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
| 15 | 6 | eceq2i 8761 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
| 16 | 14, 15 | oveq12i 7417 | . . 3 ⊢ ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
| 17 | 6 | eceq2i 8761 | . . 3 ⊢ [(𝐴(+g‘𝑅)𝐶)] ∼ = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼) |
| 18 | 13, 16, 17 | 3eqtr4g 2795 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = [(𝐴(+g‘𝑅)𝐶)] ∼ ) |
| 19 | 18 | eqcomd 2741 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 [cec 8717 Basecbs 17228 +gcplusg 17271 /s cqus 17519 NrmSGrpcnsg 19104 ~QG cqg 19105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-subg 19106 df-nsg 19107 df-eqg 19108 |
| This theorem is referenced by: ecqusaddcl 19176 rngqiprngghm 21260 |
| Copyright terms: Public domain | W3C validator |