MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqusaddd Structured version   Visualization version   GIF version

Theorem ecqusaddd 19222
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
ecqusaddd.b 𝐵 = (Base‘𝑅)
ecqusaddd.g = (𝑅 ~QG 𝐼)
ecqusaddd.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
ecqusaddd ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))

Proof of Theorem ecqusaddd
StepHypRef Expression
1 ecqusaddd.i . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
21anim1i 615 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴𝐵𝐶𝐵)))
3 3anass 1094 . . . . 5 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴𝐵𝐶𝐵)))
42, 3sylibr 234 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵))
5 ecqusaddd.q . . . . . 6 𝑄 = (𝑅 /s )
6 ecqusaddd.g . . . . . . 7 = (𝑅 ~QG 𝐼)
76oveq2i 7441 . . . . . 6 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
85, 7eqtri 2762 . . . . 5 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
9 ecqusaddd.b . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2734 . . . . 5 (+g𝑅) = (+g𝑅)
11 eqid 2734 . . . . 5 (+g𝑄) = (+g𝑄)
128, 9, 10, 11qusadd 19218 . . . 4 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼))
134, 12syl 17 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼))
146eceq2i 8785 . . . 4 [𝐴] = [𝐴](𝑅 ~QG 𝐼)
156eceq2i 8785 . . . 4 [𝐶] = [𝐶](𝑅 ~QG 𝐼)
1614, 15oveq12i 7442 . . 3 ([𝐴] (+g𝑄)[𝐶] ) = ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼))
176eceq2i 8785 . . 3 [(𝐴(+g𝑅)𝐶)] = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼)
1813, 16, 173eqtr4g 2799 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) = [(𝐴(+g𝑅)𝐶)] )
1918eqcomd 2740 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  [cec 8741  Basecbs 17244  +gcplusg 17297   /s cqus 17551  NrmSGrpcnsg 19151   ~QG cqg 19152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-ec 8745  df-qs 8749  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-nsg 19154  df-eqg 19155
This theorem is referenced by:  ecqusaddcl  19223  rngqiprngghm  21326
  Copyright terms: Public domain W3C validator