MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqusaddd Structured version   Visualization version   GIF version

Theorem ecqusaddd 19107
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
ecqusaddd.b 𝐵 = (Base‘𝑅)
ecqusaddd.g = (𝑅 ~QG 𝐼)
ecqusaddd.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
ecqusaddd ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))

Proof of Theorem ecqusaddd
StepHypRef Expression
1 ecqusaddd.i . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
21anim1i 614 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴𝐵𝐶𝐵)))
3 3anass 1092 . . . . 5 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴𝐵𝐶𝐵)))
42, 3sylibr 233 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵))
5 ecqusaddd.q . . . . . 6 𝑄 = (𝑅 /s )
6 ecqusaddd.g . . . . . . 7 = (𝑅 ~QG 𝐼)
76oveq2i 7412 . . . . . 6 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
85, 7eqtri 2752 . . . . 5 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
9 ecqusaddd.b . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2724 . . . . 5 (+g𝑅) = (+g𝑅)
11 eqid 2724 . . . . 5 (+g𝑄) = (+g𝑄)
128, 9, 10, 11qusadd 19103 . . . 4 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼))
134, 12syl 17 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼))
146eceq2i 8739 . . . 4 [𝐴] = [𝐴](𝑅 ~QG 𝐼)
156eceq2i 8739 . . . 4 [𝐶] = [𝐶](𝑅 ~QG 𝐼)
1614, 15oveq12i 7413 . . 3 ([𝐴] (+g𝑄)[𝐶] ) = ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼))
176eceq2i 8739 . . 3 [(𝐴(+g𝑅)𝐶)] = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼)
1813, 16, 173eqtr4g 2789 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) = [(𝐴(+g𝑅)𝐶)] )
1918eqcomd 2730 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6533  (class class class)co 7401  [cec 8696  Basecbs 17142  +gcplusg 17195   /s cqus 17449  NrmSGrpcnsg 19037   ~QG cqg 19038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-ec 8700  df-qs 8704  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-0g 17385  df-imas 17452  df-qus 17453  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-grp 18855  df-minusg 18856  df-subg 19039  df-nsg 19040  df-eqg 19041
This theorem is referenced by:  ecqusaddcl  19108  rngqiprngghm  21141
  Copyright terms: Public domain W3C validator