MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqusaddd Structured version   Visualization version   GIF version

Theorem ecqusaddd 19154
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
ecqusaddd.b 𝐵 = (Base‘𝑅)
ecqusaddd.g = (𝑅 ~QG 𝐼)
ecqusaddd.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
ecqusaddd ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))

Proof of Theorem ecqusaddd
StepHypRef Expression
1 ecqusaddd.i . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
21anim1i 613 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴𝐵𝐶𝐵)))
3 3anass 1092 . . . . 5 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴𝐵𝐶𝐵)))
42, 3sylibr 233 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵))
5 ecqusaddd.q . . . . . 6 𝑄 = (𝑅 /s )
6 ecqusaddd.g . . . . . . 7 = (𝑅 ~QG 𝐼)
76oveq2i 7437 . . . . . 6 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
85, 7eqtri 2756 . . . . 5 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
9 ecqusaddd.b . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2728 . . . . 5 (+g𝑅) = (+g𝑅)
11 eqid 2728 . . . . 5 (+g𝑄) = (+g𝑄)
128, 9, 10, 11qusadd 19150 . . . 4 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴𝐵𝐶𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼))
134, 12syl 17 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼))
146eceq2i 8772 . . . 4 [𝐴] = [𝐴](𝑅 ~QG 𝐼)
156eceq2i 8772 . . . 4 [𝐶] = [𝐶](𝑅 ~QG 𝐼)
1614, 15oveq12i 7438 . . 3 ([𝐴] (+g𝑄)[𝐶] ) = ([𝐴](𝑅 ~QG 𝐼)(+g𝑄)[𝐶](𝑅 ~QG 𝐼))
176eceq2i 8772 . . 3 [(𝐴(+g𝑅)𝐶)] = [(𝐴(+g𝑅)𝐶)](𝑅 ~QG 𝐼)
1813, 16, 173eqtr4g 2793 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) = [(𝐴(+g𝑅)𝐶)] )
1918eqcomd 2734 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  [cec 8729  Basecbs 17187  +gcplusg 17240   /s cqus 17494  NrmSGrpcnsg 19083   ~QG cqg 19084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-ec 8733  df-qs 8737  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-0g 17430  df-imas 17497  df-qus 17498  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-subg 19085  df-nsg 19086  df-eqg 19087
This theorem is referenced by:  ecqusaddcl  19155  rngqiprngghm  21196
  Copyright terms: Public domain W3C validator