Step | Hyp | Ref
| Expression |
1 | | rng2idlring.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Rng) |
2 | | rng2idlring.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
3 | | rng2idlring.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (𝑅 ↾s 𝐼) |
4 | | rng2idlring.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Ring) |
5 | | ringrng 20169 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ Rng) |
7 | 3, 6 | eqeltrrid 2830 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
8 | 1, 2, 7 | rng2idlnsg 21108 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
9 | | nsgsubg 19070 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
11 | | rngqiprngim.q |
. . . . . . . . . . 11
⊢ 𝑄 = (𝑅 /s ∼ ) |
12 | | rngqiprngim.g |
. . . . . . . . . . . 12
⊢ ∼ =
(𝑅 ~QG
𝐼) |
13 | 12 | oveq2i 7412 |
. . . . . . . . . . 11
⊢ (𝑅 /s ∼ ) =
(𝑅 /s
(𝑅 ~QG
𝐼)) |
14 | 11, 13 | eqtri 2752 |
. . . . . . . . . 10
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
15 | | eqid 2724 |
. . . . . . . . . 10
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
16 | 14, 15 | qus2idrng 21115 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng) |
17 | 1, 2, 10, 16 | syl3anc 1368 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ Rng) |
18 | | rnggrp 20048 |
. . . . . . . . 9
⊢ (𝑄 ∈ Rng → 𝑄 ∈ Grp) |
19 | 18 | grpmndd 18863 |
. . . . . . . 8
⊢ (𝑄 ∈ Rng → 𝑄 ∈ Mnd) |
20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ Mnd) |
21 | | ringmnd 20133 |
. . . . . . . 8
⊢ (𝐽 ∈ Ring → 𝐽 ∈ Mnd) |
22 | 4, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Mnd) |
23 | | rngqiprngim.p |
. . . . . . . 8
⊢ 𝑃 = (𝑄 ×s 𝐽) |
24 | 23 | xpsmnd0 18695 |
. . . . . . 7
⊢ ((𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd) →
(0g‘𝑃) =
〈(0g‘𝑄), (0g‘𝐽)〉) |
25 | 20, 22, 24 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑃) =
〈(0g‘𝑄), (0g‘𝐽)〉) |
26 | 25 | sneqd 4632 |
. . . . 5
⊢ (𝜑 →
{(0g‘𝑃)} =
{〈(0g‘𝑄), (0g‘𝐽)〉}) |
27 | 26 | imaeq2d 6049 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ {(0g‘𝑃)}) = (◡𝐹 “ {〈(0g‘𝑄), (0g‘𝐽)〉})) |
28 | | nfv 1909 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
29 | | opex 5454 |
. . . . . . 7
⊢
〈[𝑥] ∼ , (
1 · 𝑥)〉 ∈
V |
30 | 29 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 ∈
V) |
31 | | rngqiprngim.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
32 | 28, 30, 31 | fnmptd 6681 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐵) |
33 | | fncnvima2 7052 |
. . . . 5
⊢ (𝐹 Fn 𝐵 → (◡𝐹 “ {〈(0g‘𝑄), (0g‘𝐽)〉}) = {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ∈ {〈(0g‘𝑄), (0g‘𝐽)〉}}) |
34 | 32, 33 | syl 17 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ {〈(0g‘𝑄), (0g‘𝐽)〉}) = {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ∈ {〈(0g‘𝑄), (0g‘𝐽)〉}}) |
35 | | rng2idlring.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
36 | | rng2idlring.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
37 | | rng2idlring.1 |
. . . . . . . 8
⊢ 1 =
(1r‘𝐽) |
38 | | rngqiprngim.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑄) |
39 | 1, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31 | rngqiprngimfv 21136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) = 〈[𝑎] ∼ , ( 1 · 𝑎)〉) |
40 | 39 | eleq1d 2810 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝐹‘𝑎) ∈ {〈(0g‘𝑄), (0g‘𝐽)〉} ↔ 〈[𝑎] ∼ , ( 1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉})) |
41 | 40 | rabbidva 3431 |
. . . . 5
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ∈ {〈(0g‘𝑄), (0g‘𝐽)〉}} = {𝑎 ∈ 𝐵 ∣ 〈[𝑎] ∼ , ( 1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉}}) |
42 | | eceq1 8736 |
. . . . . . . 8
⊢ (𝑎 = (0g‘𝑅) → [𝑎] ∼ =
[(0g‘𝑅)]
∼
) |
43 | | oveq2 7409 |
. . . . . . . 8
⊢ (𝑎 = (0g‘𝑅) → ( 1 · 𝑎) = ( 1 ·
(0g‘𝑅))) |
44 | 42, 43 | opeq12d 4873 |
. . . . . . 7
⊢ (𝑎 = (0g‘𝑅) → 〈[𝑎] ∼ , ( 1 · 𝑎)〉 =
〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉) |
45 | 44 | eleq1d 2810 |
. . . . . 6
⊢ (𝑎 = (0g‘𝑅) → (〈[𝑎] ∼ , ( 1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉} ↔
〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉})) |
46 | | rnggrp 20048 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
47 | 1, 46 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
48 | 47 | grpmndd 18863 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) |
49 | | eqid 2724 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
50 | 35, 49 | mndidcl 18669 |
. . . . . . 7
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ 𝐵) |
51 | 48, 50 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑅) ∈ 𝐵) |
52 | 12 | eceq2i 8739 |
. . . . . . . . 9
⊢
[(0g‘𝑅)] ∼ =
[(0g‘𝑅)](𝑅 ~QG 𝐼) |
53 | 14, 49 | qus0 19100 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
54 | 8, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
55 | 52, 54 | eqtrid 2776 |
. . . . . . . 8
⊢ (𝜑 →
[(0g‘𝑅)]
∼
= (0g‘𝑄)) |
56 | 1, 2, 7 | rng2idl0 21109 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) |
57 | 35, 15 | 2idlss 21104 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ 𝐵) |
58 | 2, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
59 | 3, 35, 49 | ress0g 18682 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ 𝐼 ∧ 𝐼 ⊆ 𝐵) → (0g‘𝑅) = (0g‘𝐽)) |
60 | 48, 56, 58, 59 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐽)) |
61 | 60 | oveq2d 7417 |
. . . . . . . . 9
⊢ (𝜑 → ( 1 ·
(0g‘𝑅)) =
( 1 ·
(0g‘𝐽))) |
62 | 3, 36 | ressmulr 17248 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (2Ideal‘𝑅) → · =
(.r‘𝐽)) |
63 | 2, 62 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → · =
(.r‘𝐽)) |
64 | 63 | oveqd 7418 |
. . . . . . . . 9
⊢ (𝜑 → ( 1 ·
(0g‘𝐽)) =
( 1
(.r‘𝐽)(0g‘𝐽))) |
65 | | eqid 2724 |
. . . . . . . . . . 11
⊢
(Base‘𝐽) =
(Base‘𝐽) |
66 | 65, 37 | ringidcl 20150 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Ring → 1 ∈
(Base‘𝐽)) |
67 | | eqid 2724 |
. . . . . . . . . . 11
⊢
(.r‘𝐽) = (.r‘𝐽) |
68 | | eqid 2724 |
. . . . . . . . . . 11
⊢
(0g‘𝐽) = (0g‘𝐽) |
69 | 65, 67, 68 | ringrz 20178 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Ring ∧ 1 ∈
(Base‘𝐽)) → (
1
(.r‘𝐽)(0g‘𝐽)) = (0g‘𝐽)) |
70 | 4, 66, 69 | syl2anc2 584 |
. . . . . . . . 9
⊢ (𝜑 → ( 1 (.r‘𝐽)(0g‘𝐽)) = (0g‘𝐽)) |
71 | 61, 64, 70 | 3eqtrd 2768 |
. . . . . . . 8
⊢ (𝜑 → ( 1 ·
(0g‘𝑅)) =
(0g‘𝐽)) |
72 | 55, 71 | opeq12d 4873 |
. . . . . . 7
⊢ (𝜑 →
〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉 = 〈(0g‘𝑄), (0g‘𝐽)〉) |
73 | | opex 5454 |
. . . . . . . 8
⊢
〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉 ∈ V |
74 | 73 | elsn 4635 |
. . . . . . 7
⊢
(〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉} ↔
〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉 = 〈(0g‘𝑄), (0g‘𝐽)〉) |
75 | 72, 74 | sylibr 233 |
. . . . . 6
⊢ (𝜑 →
〈[(0g‘𝑅)] ∼ , ( 1 ·
(0g‘𝑅))〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉}) |
76 | | opex 5454 |
. . . . . . . . . 10
⊢
〈[𝑎] ∼ , (
1 · 𝑎)〉 ∈
V |
77 | 76 | elsn 4635 |
. . . . . . . . 9
⊢
(〈[𝑎] ∼ , (
1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉} ↔ 〈[𝑎] ∼ , ( 1 · 𝑎)〉 =
〈(0g‘𝑄), (0g‘𝐽)〉) |
78 | 12 | ovexi 7435 |
. . . . . . . . . . 11
⊢ ∼ ∈
V |
79 | | ecexg 8702 |
. . . . . . . . . . 11
⊢ ( ∼ ∈
V → [𝑎] ∼ ∈
V) |
80 | 78, 79 | ax-mp 5 |
. . . . . . . . . 10
⊢ [𝑎] ∼ ∈
V |
81 | | ovex 7434 |
. . . . . . . . . 10
⊢ ( 1 · 𝑎) ∈ V |
82 | 80, 81 | opth 5466 |
. . . . . . . . 9
⊢
(〈[𝑎] ∼ , (
1 · 𝑎)〉 =
〈(0g‘𝑄), (0g‘𝐽)〉 ↔ ([𝑎] ∼ =
(0g‘𝑄)
∧ ( 1
·
𝑎) =
(0g‘𝐽))) |
83 | 77, 82 | bitri 275 |
. . . . . . . 8
⊢
(〈[𝑎] ∼ , (
1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉} ↔ ([𝑎] ∼ =
(0g‘𝑄)
∧ ( 1
·
𝑎) =
(0g‘𝐽))) |
84 | 1, 2, 3, 4, 35, 36, 37, 12, 11 | rngqiprngimf1lem 21132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (([𝑎] ∼ =
(0g‘𝑄)
∧ ( 1
·
𝑎) =
(0g‘𝐽))
→ 𝑎 =
(0g‘𝑅))) |
85 | 83, 84 | biimtrid 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (〈[𝑎] ∼ , ( 1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉} → 𝑎 = (0g‘𝑅))) |
86 | 85 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 〈[𝑎] ∼ , ( 1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉}) → 𝑎 = (0g‘𝑅)) |
87 | 45, 51, 75, 86 | rabeqsnd 4663 |
. . . . 5
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ 〈[𝑎] ∼ , ( 1 · 𝑎)〉 ∈
{〈(0g‘𝑄), (0g‘𝐽)〉}} = {(0g‘𝑅)}) |
88 | 41, 87 | eqtrd 2764 |
. . . 4
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ∈ {〈(0g‘𝑄), (0g‘𝐽)〉}} =
{(0g‘𝑅)}) |
89 | 27, 34, 88 | 3eqtrd 2768 |
. . 3
⊢ (𝜑 → (◡𝐹 “ {(0g‘𝑃)}) =
{(0g‘𝑅)}) |
90 | 1, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31 | rngqiprngghm 21137 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑃)) |
91 | | eqid 2724 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
92 | | eqid 2724 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
93 | 35, 91, 49, 92 | kerf1ghm 19157 |
. . . 4
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑃) → (𝐹:𝐵–1-1→(Base‘𝑃) ↔ (◡𝐹 “ {(0g‘𝑃)}) =
{(0g‘𝑅)})) |
94 | 90, 93 | syl 17 |
. . 3
⊢ (𝜑 → (𝐹:𝐵–1-1→(Base‘𝑃) ↔ (◡𝐹 “ {(0g‘𝑃)}) =
{(0g‘𝑅)})) |
95 | 89, 94 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐹:𝐵–1-1→(Base‘𝑃)) |
96 | | eqidd 2725 |
. . 3
⊢ (𝜑 → 𝐹 = 𝐹) |
97 | | eqidd 2725 |
. . 3
⊢ (𝜑 → 𝐵 = 𝐵) |
98 | 1, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23 | rngqipbas 21133 |
. . 3
⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
99 | 96, 97, 98 | f1eq123d 6815 |
. 2
⊢ (𝜑 → (𝐹:𝐵–1-1→(Base‘𝑃) ↔ 𝐹:𝐵–1-1→(𝐶 × 𝐼))) |
100 | 95, 99 | mpbid 231 |
1
⊢ (𝜑 → 𝐹:𝐵–1-1→(𝐶 × 𝐼)) |