MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1 Structured version   Visualization version   GIF version

Theorem rngqiprngimf1 21237
Description: 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . . . 12 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
5 ringrng 20203 . . . . . . . . . . . . 13 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2836 . . . . . . . . . . 11 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21203 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
9 nsgsubg 19070 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
11 rngqiprngim.q . . . . . . . . . . 11 𝑄 = (𝑅 /s )
12 rngqiprngim.g . . . . . . . . . . . 12 = (𝑅 ~QG 𝐼)
1312oveq2i 7357 . . . . . . . . . . 11 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1411, 13eqtri 2754 . . . . . . . . . 10 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
15 eqid 2731 . . . . . . . . . 10 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1614, 15qus2idrng 21210 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
171, 2, 10, 16syl3anc 1373 . . . . . . . 8 (𝜑𝑄 ∈ Rng)
18 rnggrp 20076 . . . . . . . . 9 (𝑄 ∈ Rng → 𝑄 ∈ Grp)
1918grpmndd 18859 . . . . . . . 8 (𝑄 ∈ Rng → 𝑄 ∈ Mnd)
2017, 19syl 17 . . . . . . 7 (𝜑𝑄 ∈ Mnd)
21 ringmnd 20161 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Mnd)
224, 21syl 17 . . . . . . 7 (𝜑𝐽 ∈ Mnd)
23 rngqiprngim.p . . . . . . . 8 𝑃 = (𝑄 ×s 𝐽)
2423xpsmnd0 18686 . . . . . . 7 ((𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd) → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2520, 22, 24syl2anc 584 . . . . . 6 (𝜑 → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2625sneqd 4585 . . . . 5 (𝜑 → {(0g𝑃)} = {⟨(0g𝑄), (0g𝐽)⟩})
2726imaeq2d 6008 . . . 4 (𝜑 → (𝐹 “ {(0g𝑃)}) = (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}))
28 nfv 1915 . . . . . 6 𝑥𝜑
29 opex 5402 . . . . . . 7 ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V
3029a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V)
31 rngqiprngim.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
3228, 30, 31fnmptd 6622 . . . . 5 (𝜑𝐹 Fn 𝐵)
33 fncnvima2 6994 . . . . 5 (𝐹 Fn 𝐵 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
3432, 33syl 17 . . . 4 (𝜑 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
35 rng2idlring.b . . . . . . . 8 𝐵 = (Base‘𝑅)
36 rng2idlring.t . . . . . . . 8 · = (.r𝑅)
37 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
38 rngqiprngim.c . . . . . . . 8 𝐶 = (Base‘𝑄)
391, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngimfv 21235 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
4039eleq1d 2816 . . . . . 6 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
4140rabbidva 3401 . . . . 5 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
42 eceq1 8661 . . . . . . . 8 (𝑎 = (0g𝑅) → [𝑎] = [(0g𝑅)] )
43 oveq2 7354 . . . . . . . 8 (𝑎 = (0g𝑅) → ( 1 · 𝑎) = ( 1 · (0g𝑅)))
4442, 43opeq12d 4830 . . . . . . 7 (𝑎 = (0g𝑅) → ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩)
4544eleq1d 2816 . . . . . 6 (𝑎 = (0g𝑅) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
46 rnggrp 20076 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
471, 46syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
4847grpmndd 18859 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
49 eqid 2731 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5035, 49mndidcl 18657 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
5148, 50syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ 𝐵)
5212eceq2i 8664 . . . . . . . . 9 [(0g𝑅)] = [(0g𝑅)](𝑅 ~QG 𝐼)
5314, 49qus0 19101 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
548, 53syl 17 . . . . . . . . 9 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5552, 54eqtrid 2778 . . . . . . . 8 (𝜑 → [(0g𝑅)] = (0g𝑄))
561, 2, 7rng2idl0 21204 . . . . . . . . . . 11 (𝜑 → (0g𝑅) ∈ 𝐼)
5735, 152idlss 21199 . . . . . . . . . . . 12 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼𝐵)
582, 57syl 17 . . . . . . . . . . 11 (𝜑𝐼𝐵)
593, 35, 49ress0g 18670 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝐼𝐼𝐵) → (0g𝑅) = (0g𝐽))
6048, 56, 58, 59syl3anc 1373 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝐽))
6160oveq2d 7362 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝑅)) = ( 1 · (0g𝐽)))
623, 36ressmulr 17211 . . . . . . . . . . 11 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
632, 62syl 17 . . . . . . . . . 10 (𝜑· = (.r𝐽))
6463oveqd 7363 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝐽)) = ( 1 (.r𝐽)(0g𝐽)))
65 eqid 2731 . . . . . . . . . . 11 (Base‘𝐽) = (Base‘𝐽)
6665, 37ringidcl 20183 . . . . . . . . . 10 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
67 eqid 2731 . . . . . . . . . . 11 (.r𝐽) = (.r𝐽)
68 eqid 2731 . . . . . . . . . . 11 (0g𝐽) = (0g𝐽)
6965, 67, 68ringrz 20212 . . . . . . . . . 10 ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
704, 66, 69syl2anc2 585 . . . . . . . . 9 (𝜑 → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
7161, 64, 703eqtrd 2770 . . . . . . . 8 (𝜑 → ( 1 · (0g𝑅)) = (0g𝐽))
7255, 71opeq12d 4830 . . . . . . 7 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
73 opex 5402 . . . . . . . 8 ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ V
7473elsn 4588 . . . . . . 7 (⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7572, 74sylibr 234 . . . . . 6 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩})
76 opex 5402 . . . . . . . . . 10 ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ V
7776elsn 4588 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7812ovexi 7380 . . . . . . . . . . 11 ∈ V
79 ecexg 8626 . . . . . . . . . . 11 ( ∈ V → [𝑎] ∈ V)
8078, 79ax-mp 5 . . . . . . . . . 10 [𝑎] ∈ V
81 ovex 7379 . . . . . . . . . 10 ( 1 · 𝑎) ∈ V
8280, 81opth 5414 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩ ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
8377, 82bitri 275 . . . . . . . 8 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
841, 2, 3, 4, 35, 36, 37, 12, 11rngqiprngimf1lem 21231 . . . . . . . 8 ((𝜑𝑎𝐵) → (([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)) → 𝑎 = (0g𝑅)))
8583, 84biimtrid 242 . . . . . . 7 ((𝜑𝑎𝐵) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} → 𝑎 = (0g𝑅)))
8685imp 406 . . . . . 6 (((𝜑𝑎𝐵) ∧ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}) → 𝑎 = (0g𝑅))
8745, 51, 75, 86rabeqsnd 4619 . . . . 5 (𝜑 → {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8841, 87eqtrd 2766 . . . 4 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8927, 34, 883eqtrd 2770 . . 3 (𝜑 → (𝐹 “ {(0g𝑃)}) = {(0g𝑅)})
901, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngghm 21236 . . . 4 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑃))
91 eqid 2731 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
92 eqid 2731 . . . . 5 (0g𝑃) = (0g𝑃)
9335, 91, 49, 92kerf1ghm 19159 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑃) → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9490, 93syl 17 . . 3 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9589, 94mpbird 257 . 2 (𝜑𝐹:𝐵1-1→(Base‘𝑃))
96 eqidd 2732 . . 3 (𝜑𝐹 = 𝐹)
97 eqidd 2732 . . 3 (𝜑𝐵 = 𝐵)
981, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23rngqipbas 21232 . . 3 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
9996, 97, 98f1eq123d 6755 . 2 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ 𝐹:𝐵1-1→(𝐶 × 𝐼)))
10095, 99mpbid 232 1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  {csn 4573  cop 4579  cmpt 5170   × cxp 5612  ccnv 5613  cima 5617   Fn wfn 6476  1-1wf1 6478  cfv 6481  (class class class)co 7346  [cec 8620  Basecbs 17120  s cress 17141  .rcmulr 17162  0gc0g 17343   /s cqus 17409   ×s cxps 17410  Mndcmnd 18642  Grpcgrp 18846  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035   GrpHom cghm 19124  Rngcrng 20070  1rcur 20099  Ringcrg 20151  2Idealc2idl 21186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-qus 17413  df-xps 17414  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-subrng 20461  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-2idl 21187
This theorem is referenced by:  rngqiprngim  21241
  Copyright terms: Public domain W3C validator