MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1 Structured version   Visualization version   GIF version

Theorem rngqiprngimf1 21261
Description: 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . . . 12 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
5 ringrng 20245 . . . . . . . . . . . . 13 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2839 . . . . . . . . . . 11 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21227 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
9 nsgsubg 19141 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
11 rngqiprngim.q . . . . . . . . . . 11 𝑄 = (𝑅 /s )
12 rngqiprngim.g . . . . . . . . . . . 12 = (𝑅 ~QG 𝐼)
1312oveq2i 7416 . . . . . . . . . . 11 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1411, 13eqtri 2758 . . . . . . . . . 10 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
15 eqid 2735 . . . . . . . . . 10 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1614, 15qus2idrng 21234 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
171, 2, 10, 16syl3anc 1373 . . . . . . . 8 (𝜑𝑄 ∈ Rng)
18 rnggrp 20118 . . . . . . . . 9 (𝑄 ∈ Rng → 𝑄 ∈ Grp)
1918grpmndd 18929 . . . . . . . 8 (𝑄 ∈ Rng → 𝑄 ∈ Mnd)
2017, 19syl 17 . . . . . . 7 (𝜑𝑄 ∈ Mnd)
21 ringmnd 20203 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Mnd)
224, 21syl 17 . . . . . . 7 (𝜑𝐽 ∈ Mnd)
23 rngqiprngim.p . . . . . . . 8 𝑃 = (𝑄 ×s 𝐽)
2423xpsmnd0 18756 . . . . . . 7 ((𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd) → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2520, 22, 24syl2anc 584 . . . . . 6 (𝜑 → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2625sneqd 4613 . . . . 5 (𝜑 → {(0g𝑃)} = {⟨(0g𝑄), (0g𝐽)⟩})
2726imaeq2d 6047 . . . 4 (𝜑 → (𝐹 “ {(0g𝑃)}) = (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}))
28 nfv 1914 . . . . . 6 𝑥𝜑
29 opex 5439 . . . . . . 7 ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V
3029a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V)
31 rngqiprngim.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
3228, 30, 31fnmptd 6679 . . . . 5 (𝜑𝐹 Fn 𝐵)
33 fncnvima2 7051 . . . . 5 (𝐹 Fn 𝐵 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
3432, 33syl 17 . . . 4 (𝜑 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
35 rng2idlring.b . . . . . . . 8 𝐵 = (Base‘𝑅)
36 rng2idlring.t . . . . . . . 8 · = (.r𝑅)
37 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
38 rngqiprngim.c . . . . . . . 8 𝐶 = (Base‘𝑄)
391, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngimfv 21259 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
4039eleq1d 2819 . . . . . 6 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
4140rabbidva 3422 . . . . 5 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
42 eceq1 8758 . . . . . . . 8 (𝑎 = (0g𝑅) → [𝑎] = [(0g𝑅)] )
43 oveq2 7413 . . . . . . . 8 (𝑎 = (0g𝑅) → ( 1 · 𝑎) = ( 1 · (0g𝑅)))
4442, 43opeq12d 4857 . . . . . . 7 (𝑎 = (0g𝑅) → ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩)
4544eleq1d 2819 . . . . . 6 (𝑎 = (0g𝑅) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
46 rnggrp 20118 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
471, 46syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
4847grpmndd 18929 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
49 eqid 2735 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5035, 49mndidcl 18727 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
5148, 50syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ 𝐵)
5212eceq2i 8761 . . . . . . . . 9 [(0g𝑅)] = [(0g𝑅)](𝑅 ~QG 𝐼)
5314, 49qus0 19172 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
548, 53syl 17 . . . . . . . . 9 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5552, 54eqtrid 2782 . . . . . . . 8 (𝜑 → [(0g𝑅)] = (0g𝑄))
561, 2, 7rng2idl0 21228 . . . . . . . . . . 11 (𝜑 → (0g𝑅) ∈ 𝐼)
5735, 152idlss 21223 . . . . . . . . . . . 12 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼𝐵)
582, 57syl 17 . . . . . . . . . . 11 (𝜑𝐼𝐵)
593, 35, 49ress0g 18740 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝐼𝐼𝐵) → (0g𝑅) = (0g𝐽))
6048, 56, 58, 59syl3anc 1373 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝐽))
6160oveq2d 7421 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝑅)) = ( 1 · (0g𝐽)))
623, 36ressmulr 17321 . . . . . . . . . . 11 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
632, 62syl 17 . . . . . . . . . 10 (𝜑· = (.r𝐽))
6463oveqd 7422 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝐽)) = ( 1 (.r𝐽)(0g𝐽)))
65 eqid 2735 . . . . . . . . . . 11 (Base‘𝐽) = (Base‘𝐽)
6665, 37ringidcl 20225 . . . . . . . . . 10 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
67 eqid 2735 . . . . . . . . . . 11 (.r𝐽) = (.r𝐽)
68 eqid 2735 . . . . . . . . . . 11 (0g𝐽) = (0g𝐽)
6965, 67, 68ringrz 20254 . . . . . . . . . 10 ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
704, 66, 69syl2anc2 585 . . . . . . . . 9 (𝜑 → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
7161, 64, 703eqtrd 2774 . . . . . . . 8 (𝜑 → ( 1 · (0g𝑅)) = (0g𝐽))
7255, 71opeq12d 4857 . . . . . . 7 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
73 opex 5439 . . . . . . . 8 ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ V
7473elsn 4616 . . . . . . 7 (⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7572, 74sylibr 234 . . . . . 6 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩})
76 opex 5439 . . . . . . . . . 10 ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ V
7776elsn 4616 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7812ovexi 7439 . . . . . . . . . . 11 ∈ V
79 ecexg 8723 . . . . . . . . . . 11 ( ∈ V → [𝑎] ∈ V)
8078, 79ax-mp 5 . . . . . . . . . 10 [𝑎] ∈ V
81 ovex 7438 . . . . . . . . . 10 ( 1 · 𝑎) ∈ V
8280, 81opth 5451 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩ ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
8377, 82bitri 275 . . . . . . . 8 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
841, 2, 3, 4, 35, 36, 37, 12, 11rngqiprngimf1lem 21255 . . . . . . . 8 ((𝜑𝑎𝐵) → (([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)) → 𝑎 = (0g𝑅)))
8583, 84biimtrid 242 . . . . . . 7 ((𝜑𝑎𝐵) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} → 𝑎 = (0g𝑅)))
8685imp 406 . . . . . 6 (((𝜑𝑎𝐵) ∧ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}) → 𝑎 = (0g𝑅))
8745, 51, 75, 86rabeqsnd 4645 . . . . 5 (𝜑 → {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8841, 87eqtrd 2770 . . . 4 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8927, 34, 883eqtrd 2774 . . 3 (𝜑 → (𝐹 “ {(0g𝑃)}) = {(0g𝑅)})
901, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngghm 21260 . . . 4 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑃))
91 eqid 2735 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
92 eqid 2735 . . . . 5 (0g𝑃) = (0g𝑃)
9335, 91, 49, 92kerf1ghm 19230 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑃) → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9490, 93syl 17 . . 3 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9589, 94mpbird 257 . 2 (𝜑𝐹:𝐵1-1→(Base‘𝑃))
96 eqidd 2736 . . 3 (𝜑𝐹 = 𝐹)
97 eqidd 2736 . . 3 (𝜑𝐵 = 𝐵)
981, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23rngqipbas 21256 . . 3 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
9996, 97, 98f1eq123d 6810 . 2 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ 𝐹:𝐵1-1→(𝐶 × 𝐼)))
10095, 99mpbid 232 1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  {csn 4601  cop 4607  cmpt 5201   × cxp 5652  ccnv 5653  cima 5657   Fn wfn 6526  1-1wf1 6528  cfv 6531  (class class class)co 7405  [cec 8717  Basecbs 17228  s cress 17251  .rcmulr 17272  0gc0g 17453   /s cqus 17519   ×s cxps 17520  Mndcmnd 18712  Grpcgrp 18916  SubGrpcsubg 19103  NrmSGrpcnsg 19104   ~QG cqg 19105   GrpHom cghm 19195  Rngcrng 20112  1rcur 20141  Ringcrg 20193  2Idealc2idl 21210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-imas 17522  df-qus 17523  df-xps 17524  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-subrng 20506  df-lss 20889  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-2idl 21211
This theorem is referenced by:  rngqiprngim  21265
  Copyright terms: Public domain W3C validator