MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1 Structured version   Visualization version   GIF version

Theorem rngqiprngimf1 21138
Description: 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . . . 12 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
5 ringrng 20169 . . . . . . . . . . . . 13 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2830 . . . . . . . . . . 11 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21108 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
9 nsgsubg 19070 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
11 rngqiprngim.q . . . . . . . . . . 11 𝑄 = (𝑅 /s )
12 rngqiprngim.g . . . . . . . . . . . 12 = (𝑅 ~QG 𝐼)
1312oveq2i 7412 . . . . . . . . . . 11 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1411, 13eqtri 2752 . . . . . . . . . 10 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
15 eqid 2724 . . . . . . . . . 10 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1614, 15qus2idrng 21115 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
171, 2, 10, 16syl3anc 1368 . . . . . . . 8 (𝜑𝑄 ∈ Rng)
18 rnggrp 20048 . . . . . . . . 9 (𝑄 ∈ Rng → 𝑄 ∈ Grp)
1918grpmndd 18863 . . . . . . . 8 (𝑄 ∈ Rng → 𝑄 ∈ Mnd)
2017, 19syl 17 . . . . . . 7 (𝜑𝑄 ∈ Mnd)
21 ringmnd 20133 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Mnd)
224, 21syl 17 . . . . . . 7 (𝜑𝐽 ∈ Mnd)
23 rngqiprngim.p . . . . . . . 8 𝑃 = (𝑄 ×s 𝐽)
2423xpsmnd0 18695 . . . . . . 7 ((𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd) → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2520, 22, 24syl2anc 583 . . . . . 6 (𝜑 → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2625sneqd 4632 . . . . 5 (𝜑 → {(0g𝑃)} = {⟨(0g𝑄), (0g𝐽)⟩})
2726imaeq2d 6049 . . . 4 (𝜑 → (𝐹 “ {(0g𝑃)}) = (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}))
28 nfv 1909 . . . . . 6 𝑥𝜑
29 opex 5454 . . . . . . 7 ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V
3029a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V)
31 rngqiprngim.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
3228, 30, 31fnmptd 6681 . . . . 5 (𝜑𝐹 Fn 𝐵)
33 fncnvima2 7052 . . . . 5 (𝐹 Fn 𝐵 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
3432, 33syl 17 . . . 4 (𝜑 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
35 rng2idlring.b . . . . . . . 8 𝐵 = (Base‘𝑅)
36 rng2idlring.t . . . . . . . 8 · = (.r𝑅)
37 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
38 rngqiprngim.c . . . . . . . 8 𝐶 = (Base‘𝑄)
391, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngimfv 21136 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
4039eleq1d 2810 . . . . . 6 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
4140rabbidva 3431 . . . . 5 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
42 eceq1 8736 . . . . . . . 8 (𝑎 = (0g𝑅) → [𝑎] = [(0g𝑅)] )
43 oveq2 7409 . . . . . . . 8 (𝑎 = (0g𝑅) → ( 1 · 𝑎) = ( 1 · (0g𝑅)))
4442, 43opeq12d 4873 . . . . . . 7 (𝑎 = (0g𝑅) → ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩)
4544eleq1d 2810 . . . . . 6 (𝑎 = (0g𝑅) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
46 rnggrp 20048 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
471, 46syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
4847grpmndd 18863 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
49 eqid 2724 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5035, 49mndidcl 18669 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
5148, 50syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ 𝐵)
5212eceq2i 8739 . . . . . . . . 9 [(0g𝑅)] = [(0g𝑅)](𝑅 ~QG 𝐼)
5314, 49qus0 19100 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
548, 53syl 17 . . . . . . . . 9 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5552, 54eqtrid 2776 . . . . . . . 8 (𝜑 → [(0g𝑅)] = (0g𝑄))
561, 2, 7rng2idl0 21109 . . . . . . . . . . 11 (𝜑 → (0g𝑅) ∈ 𝐼)
5735, 152idlss 21104 . . . . . . . . . . . 12 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼𝐵)
582, 57syl 17 . . . . . . . . . . 11 (𝜑𝐼𝐵)
593, 35, 49ress0g 18682 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝐼𝐼𝐵) → (0g𝑅) = (0g𝐽))
6048, 56, 58, 59syl3anc 1368 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝐽))
6160oveq2d 7417 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝑅)) = ( 1 · (0g𝐽)))
623, 36ressmulr 17248 . . . . . . . . . . 11 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
632, 62syl 17 . . . . . . . . . 10 (𝜑· = (.r𝐽))
6463oveqd 7418 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝐽)) = ( 1 (.r𝐽)(0g𝐽)))
65 eqid 2724 . . . . . . . . . . 11 (Base‘𝐽) = (Base‘𝐽)
6665, 37ringidcl 20150 . . . . . . . . . 10 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
67 eqid 2724 . . . . . . . . . . 11 (.r𝐽) = (.r𝐽)
68 eqid 2724 . . . . . . . . . . 11 (0g𝐽) = (0g𝐽)
6965, 67, 68ringrz 20178 . . . . . . . . . 10 ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
704, 66, 69syl2anc2 584 . . . . . . . . 9 (𝜑 → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
7161, 64, 703eqtrd 2768 . . . . . . . 8 (𝜑 → ( 1 · (0g𝑅)) = (0g𝐽))
7255, 71opeq12d 4873 . . . . . . 7 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
73 opex 5454 . . . . . . . 8 ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ V
7473elsn 4635 . . . . . . 7 (⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7572, 74sylibr 233 . . . . . 6 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩})
76 opex 5454 . . . . . . . . . 10 ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ V
7776elsn 4635 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7812ovexi 7435 . . . . . . . . . . 11 ∈ V
79 ecexg 8702 . . . . . . . . . . 11 ( ∈ V → [𝑎] ∈ V)
8078, 79ax-mp 5 . . . . . . . . . 10 [𝑎] ∈ V
81 ovex 7434 . . . . . . . . . 10 ( 1 · 𝑎) ∈ V
8280, 81opth 5466 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩ ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
8377, 82bitri 275 . . . . . . . 8 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
841, 2, 3, 4, 35, 36, 37, 12, 11rngqiprngimf1lem 21132 . . . . . . . 8 ((𝜑𝑎𝐵) → (([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)) → 𝑎 = (0g𝑅)))
8583, 84biimtrid 241 . . . . . . 7 ((𝜑𝑎𝐵) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} → 𝑎 = (0g𝑅)))
8685imp 406 . . . . . 6 (((𝜑𝑎𝐵) ∧ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}) → 𝑎 = (0g𝑅))
8745, 51, 75, 86rabeqsnd 4663 . . . . 5 (𝜑 → {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8841, 87eqtrd 2764 . . . 4 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8927, 34, 883eqtrd 2768 . . 3 (𝜑 → (𝐹 “ {(0g𝑃)}) = {(0g𝑅)})
901, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngghm 21137 . . . 4 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑃))
91 eqid 2724 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
92 eqid 2724 . . . . 5 (0g𝑃) = (0g𝑃)
9335, 91, 49, 92kerf1ghm 19157 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑃) → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9490, 93syl 17 . . 3 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9589, 94mpbird 257 . 2 (𝜑𝐹:𝐵1-1→(Base‘𝑃))
96 eqidd 2725 . . 3 (𝜑𝐹 = 𝐹)
97 eqidd 2725 . . 3 (𝜑𝐵 = 𝐵)
981, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23rngqipbas 21133 . . 3 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
9996, 97, 98f1eq123d 6815 . 2 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ 𝐹:𝐵1-1→(𝐶 × 𝐼)))
10095, 99mpbid 231 1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  wss 3940  {csn 4620  cop 4626  cmpt 5221   × cxp 5664  ccnv 5665  cima 5669   Fn wfn 6528  1-1wf1 6530  cfv 6533  (class class class)co 7401  [cec 8696  Basecbs 17140  s cress 17169  .rcmulr 17194  0gc0g 17381   /s cqus 17447   ×s cxps 17448  Mndcmnd 18654  Grpcgrp 18850  SubGrpcsubg 19032  NrmSGrpcnsg 19033   ~QG cqg 19034   GrpHom cghm 19123  Rngcrng 20042  1rcur 20071  Ringcrg 20123  2Idealc2idl 21091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-ec 8700  df-qs 8704  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-imas 17450  df-qus 17451  df-xps 17452  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19035  df-nsg 19036  df-eqg 19037  df-ghm 19124  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-ring 20125  df-oppr 20221  df-dvdsr 20244  df-unit 20245  df-invr 20275  df-subrng 20431  df-lss 20764  df-sra 21006  df-rgmod 21007  df-lidl 21052  df-2idl 21092
This theorem is referenced by:  rngqiprngim  21142
  Copyright terms: Public domain W3C validator