MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1 Structured version   Visualization version   GIF version

Theorem rngqiprngimf1 21143
Description: 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (πœ‘ β†’ 𝑅 ∈ Rng)
rng2idlring.i (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
rng2idlring.j 𝐽 = (𝑅 β†Ύs 𝐼)
rng2idlring.u (πœ‘ β†’ 𝐽 ∈ Ring)
rng2idlring.b 𝐡 = (Baseβ€˜π‘…)
rng2idlring.t Β· = (.rβ€˜π‘…)
rng2idlring.1 1 = (1rβ€˜π½)
rngqiprngim.g ∼ = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s ∼ )
rngqiprngim.c 𝐢 = (Baseβ€˜π‘„)
rngqiprngim.p 𝑃 = (𝑄 Γ—s 𝐽)
rngqiprngim.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩)
Assertion
Ref Expression
rngqiprngimf1 (πœ‘ β†’ 𝐹:𝐡–1-1β†’(𝐢 Γ— 𝐼))
Distinct variable groups:   π‘₯,𝐢   π‘₯,𝐼   π‘₯,𝐡   πœ‘,π‘₯   π‘₯, ∼   π‘₯, 1   π‘₯, Β·   π‘₯,𝑅
Allowed substitution hints:   𝑃(π‘₯)   𝑄(π‘₯)   𝐹(π‘₯)   𝐽(π‘₯)

Proof of Theorem rngqiprngimf1
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (πœ‘ β†’ 𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
3 rng2idlring.j . . . . . . . . . . . 12 𝐽 = (𝑅 β†Ύs 𝐼)
4 rng2idlring.u . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐽 ∈ Ring)
5 ringrng 20174 . . . . . . . . . . . . 13 (𝐽 ∈ Ring β†’ 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐽 ∈ Rng)
73, 6eqeltrrid 2830 . . . . . . . . . . 11 (πœ‘ β†’ (𝑅 β†Ύs 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21113 . . . . . . . . . 10 (πœ‘ β†’ 𝐼 ∈ (NrmSGrpβ€˜π‘…))
9 nsgsubg 19075 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrpβ€˜π‘…) β†’ 𝐼 ∈ (SubGrpβ€˜π‘…))
108, 9syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐼 ∈ (SubGrpβ€˜π‘…))
11 rngqiprngim.q . . . . . . . . . . 11 𝑄 = (𝑅 /s ∼ )
12 rngqiprngim.g . . . . . . . . . . . 12 ∼ = (𝑅 ~QG 𝐼)
1312oveq2i 7412 . . . . . . . . . . 11 (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼))
1411, 13eqtri 2752 . . . . . . . . . 10 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
15 eqid 2724 . . . . . . . . . 10 (2Idealβ€˜π‘…) = (2Idealβ€˜π‘…)
1614, 15qus2idrng 21120 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…) ∧ 𝐼 ∈ (SubGrpβ€˜π‘…)) β†’ 𝑄 ∈ Rng)
171, 2, 10, 16syl3anc 1368 . . . . . . . 8 (πœ‘ β†’ 𝑄 ∈ Rng)
18 rnggrp 20053 . . . . . . . . 9 (𝑄 ∈ Rng β†’ 𝑄 ∈ Grp)
1918grpmndd 18866 . . . . . . . 8 (𝑄 ∈ Rng β†’ 𝑄 ∈ Mnd)
2017, 19syl 17 . . . . . . 7 (πœ‘ β†’ 𝑄 ∈ Mnd)
21 ringmnd 20138 . . . . . . . 8 (𝐽 ∈ Ring β†’ 𝐽 ∈ Mnd)
224, 21syl 17 . . . . . . 7 (πœ‘ β†’ 𝐽 ∈ Mnd)
23 rngqiprngim.p . . . . . . . 8 𝑃 = (𝑄 Γ—s 𝐽)
2423xpsmnd0 18698 . . . . . . 7 ((𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd) β†’ (0gβ€˜π‘ƒ) = ⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩)
2520, 22, 24syl2anc 583 . . . . . 6 (πœ‘ β†’ (0gβ€˜π‘ƒ) = ⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩)
2625sneqd 4632 . . . . 5 (πœ‘ β†’ {(0gβ€˜π‘ƒ)} = {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩})
2726imaeq2d 6049 . . . 4 (πœ‘ β†’ (◑𝐹 β€œ {(0gβ€˜π‘ƒ)}) = (◑𝐹 β€œ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}))
28 nfv 1909 . . . . . 6 β„²π‘₯πœ‘
29 opex 5454 . . . . . . 7 ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩ ∈ V
3029a1i 11 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩ ∈ V)
31 rngqiprngim.f . . . . . 6 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩)
3228, 30, 31fnmptd 6681 . . . . 5 (πœ‘ β†’ 𝐹 Fn 𝐡)
33 fncnvima2 7052 . . . . 5 (𝐹 Fn 𝐡 β†’ (◑𝐹 β€œ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}) = {π‘Ž ∈ 𝐡 ∣ (πΉβ€˜π‘Ž) ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}})
3432, 33syl 17 . . . 4 (πœ‘ β†’ (◑𝐹 β€œ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}) = {π‘Ž ∈ 𝐡 ∣ (πΉβ€˜π‘Ž) ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}})
35 rng2idlring.b . . . . . . . 8 𝐡 = (Baseβ€˜π‘…)
36 rng2idlring.t . . . . . . . 8 Β· = (.rβ€˜π‘…)
37 rng2idlring.1 . . . . . . . 8 1 = (1rβ€˜π½)
38 rngqiprngim.c . . . . . . . 8 𝐢 = (Baseβ€˜π‘„)
391, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngimfv 21141 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) = ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩)
4039eleq1d 2810 . . . . . 6 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ ((πΉβ€˜π‘Ž) ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩} ↔ ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}))
4140rabbidva 3431 . . . . 5 (πœ‘ β†’ {π‘Ž ∈ 𝐡 ∣ (πΉβ€˜π‘Ž) ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}} = {π‘Ž ∈ 𝐡 ∣ ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}})
42 eceq1 8737 . . . . . . . 8 (π‘Ž = (0gβ€˜π‘…) β†’ [π‘Ž] ∼ = [(0gβ€˜π‘…)] ∼ )
43 oveq2 7409 . . . . . . . 8 (π‘Ž = (0gβ€˜π‘…) β†’ ( 1 Β· π‘Ž) = ( 1 Β· (0gβ€˜π‘…)))
4442, 43opeq12d 4873 . . . . . . 7 (π‘Ž = (0gβ€˜π‘…) β†’ ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ = ⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩)
4544eleq1d 2810 . . . . . 6 (π‘Ž = (0gβ€˜π‘…) β†’ (⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩} ↔ ⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}))
46 rnggrp 20053 . . . . . . . . 9 (𝑅 ∈ Rng β†’ 𝑅 ∈ Grp)
471, 46syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑅 ∈ Grp)
4847grpmndd 18866 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ Mnd)
49 eqid 2724 . . . . . . . 8 (0gβ€˜π‘…) = (0gβ€˜π‘…)
5035, 49mndidcl 18672 . . . . . . 7 (𝑅 ∈ Mnd β†’ (0gβ€˜π‘…) ∈ 𝐡)
5148, 50syl 17 . . . . . 6 (πœ‘ β†’ (0gβ€˜π‘…) ∈ 𝐡)
5212eceq2i 8740 . . . . . . . . 9 [(0gβ€˜π‘…)] ∼ = [(0gβ€˜π‘…)](𝑅 ~QG 𝐼)
5314, 49qus0 19105 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrpβ€˜π‘…) β†’ [(0gβ€˜π‘…)](𝑅 ~QG 𝐼) = (0gβ€˜π‘„))
548, 53syl 17 . . . . . . . . 9 (πœ‘ β†’ [(0gβ€˜π‘…)](𝑅 ~QG 𝐼) = (0gβ€˜π‘„))
5552, 54eqtrid 2776 . . . . . . . 8 (πœ‘ β†’ [(0gβ€˜π‘…)] ∼ = (0gβ€˜π‘„))
561, 2, 7rng2idl0 21114 . . . . . . . . . . 11 (πœ‘ β†’ (0gβ€˜π‘…) ∈ 𝐼)
5735, 152idlss 21109 . . . . . . . . . . . 12 (𝐼 ∈ (2Idealβ€˜π‘…) β†’ 𝐼 βŠ† 𝐡)
582, 57syl 17 . . . . . . . . . . 11 (πœ‘ β†’ 𝐼 βŠ† 𝐡)
593, 35, 49ress0g 18685 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0gβ€˜π‘…) ∈ 𝐼 ∧ 𝐼 βŠ† 𝐡) β†’ (0gβ€˜π‘…) = (0gβ€˜π½))
6048, 56, 58, 59syl3anc 1368 . . . . . . . . . 10 (πœ‘ β†’ (0gβ€˜π‘…) = (0gβ€˜π½))
6160oveq2d 7417 . . . . . . . . 9 (πœ‘ β†’ ( 1 Β· (0gβ€˜π‘…)) = ( 1 Β· (0gβ€˜π½)))
623, 36ressmulr 17251 . . . . . . . . . . 11 (𝐼 ∈ (2Idealβ€˜π‘…) β†’ Β· = (.rβ€˜π½))
632, 62syl 17 . . . . . . . . . 10 (πœ‘ β†’ Β· = (.rβ€˜π½))
6463oveqd 7418 . . . . . . . . 9 (πœ‘ β†’ ( 1 Β· (0gβ€˜π½)) = ( 1 (.rβ€˜π½)(0gβ€˜π½)))
65 eqid 2724 . . . . . . . . . . 11 (Baseβ€˜π½) = (Baseβ€˜π½)
6665, 37ringidcl 20155 . . . . . . . . . 10 (𝐽 ∈ Ring β†’ 1 ∈ (Baseβ€˜π½))
67 eqid 2724 . . . . . . . . . . 11 (.rβ€˜π½) = (.rβ€˜π½)
68 eqid 2724 . . . . . . . . . . 11 (0gβ€˜π½) = (0gβ€˜π½)
6965, 67, 68ringrz 20183 . . . . . . . . . 10 ((𝐽 ∈ Ring ∧ 1 ∈ (Baseβ€˜π½)) β†’ ( 1 (.rβ€˜π½)(0gβ€˜π½)) = (0gβ€˜π½))
704, 66, 69syl2anc2 584 . . . . . . . . 9 (πœ‘ β†’ ( 1 (.rβ€˜π½)(0gβ€˜π½)) = (0gβ€˜π½))
7161, 64, 703eqtrd 2768 . . . . . . . 8 (πœ‘ β†’ ( 1 Β· (0gβ€˜π‘…)) = (0gβ€˜π½))
7255, 71opeq12d 4873 . . . . . . 7 (πœ‘ β†’ ⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩ = ⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩)
73 opex 5454 . . . . . . . 8 ⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩ ∈ V
7473elsn 4635 . . . . . . 7 (⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩} ↔ ⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩ = ⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩)
7572, 74sylibr 233 . . . . . 6 (πœ‘ β†’ ⟨[(0gβ€˜π‘…)] ∼ , ( 1 Β· (0gβ€˜π‘…))⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩})
76 opex 5454 . . . . . . . . . 10 ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ V
7776elsn 4635 . . . . . . . . 9 (⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩} ↔ ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ = ⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩)
7812ovexi 7435 . . . . . . . . . . 11 ∼ ∈ V
79 ecexg 8703 . . . . . . . . . . 11 ( ∼ ∈ V β†’ [π‘Ž] ∼ ∈ V)
8078, 79ax-mp 5 . . . . . . . . . 10 [π‘Ž] ∼ ∈ V
81 ovex 7434 . . . . . . . . . 10 ( 1 Β· π‘Ž) ∈ V
8280, 81opth 5466 . . . . . . . . 9 (⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ = ⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩ ↔ ([π‘Ž] ∼ = (0gβ€˜π‘„) ∧ ( 1 Β· π‘Ž) = (0gβ€˜π½)))
8377, 82bitri 275 . . . . . . . 8 (⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩} ↔ ([π‘Ž] ∼ = (0gβ€˜π‘„) ∧ ( 1 Β· π‘Ž) = (0gβ€˜π½)))
841, 2, 3, 4, 35, 36, 37, 12, 11rngqiprngimf1lem 21137 . . . . . . . 8 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (([π‘Ž] ∼ = (0gβ€˜π‘„) ∧ ( 1 Β· π‘Ž) = (0gβ€˜π½)) β†’ π‘Ž = (0gβ€˜π‘…)))
8583, 84biimtrid 241 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩} β†’ π‘Ž = (0gβ€˜π‘…)))
8685imp 406 . . . . . 6 (((πœ‘ ∧ π‘Ž ∈ 𝐡) ∧ ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}) β†’ π‘Ž = (0gβ€˜π‘…))
8745, 51, 75, 86rabeqsnd 4663 . . . . 5 (πœ‘ β†’ {π‘Ž ∈ 𝐡 ∣ ⟨[π‘Ž] ∼ , ( 1 Β· π‘Ž)⟩ ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}} = {(0gβ€˜π‘…)})
8841, 87eqtrd 2764 . . . 4 (πœ‘ β†’ {π‘Ž ∈ 𝐡 ∣ (πΉβ€˜π‘Ž) ∈ {⟨(0gβ€˜π‘„), (0gβ€˜π½)⟩}} = {(0gβ€˜π‘…)})
8927, 34, 883eqtrd 2768 . . 3 (πœ‘ β†’ (◑𝐹 β€œ {(0gβ€˜π‘ƒ)}) = {(0gβ€˜π‘…)})
901, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngghm 21142 . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝑅 GrpHom 𝑃))
91 eqid 2724 . . . . 5 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
92 eqid 2724 . . . . 5 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
9335, 91, 49, 92kerf1ghm 19162 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑃) β†’ (𝐹:𝐡–1-1β†’(Baseβ€˜π‘ƒ) ↔ (◑𝐹 β€œ {(0gβ€˜π‘ƒ)}) = {(0gβ€˜π‘…)}))
9490, 93syl 17 . . 3 (πœ‘ β†’ (𝐹:𝐡–1-1β†’(Baseβ€˜π‘ƒ) ↔ (◑𝐹 β€œ {(0gβ€˜π‘ƒ)}) = {(0gβ€˜π‘…)}))
9589, 94mpbird 257 . 2 (πœ‘ β†’ 𝐹:𝐡–1-1β†’(Baseβ€˜π‘ƒ))
96 eqidd 2725 . . 3 (πœ‘ β†’ 𝐹 = 𝐹)
97 eqidd 2725 . . 3 (πœ‘ β†’ 𝐡 = 𝐡)
981, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23rngqipbas 21138 . . 3 (πœ‘ β†’ (Baseβ€˜π‘ƒ) = (𝐢 Γ— 𝐼))
9996, 97, 98f1eq123d 6815 . 2 (πœ‘ β†’ (𝐹:𝐡–1-1β†’(Baseβ€˜π‘ƒ) ↔ 𝐹:𝐡–1-1β†’(𝐢 Γ— 𝐼)))
10095, 99mpbid 231 1 (πœ‘ β†’ 𝐹:𝐡–1-1β†’(𝐢 Γ— 𝐼))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   βŠ† wss 3940  {csn 4620  βŸ¨cop 4626   ↦ cmpt 5221   Γ— cxp 5664  β—‘ccnv 5665   β€œ cima 5669   Fn wfn 6528  β€“1-1β†’wf1 6530  β€˜cfv 6533  (class class class)co 7401  [cec 8697  Basecbs 17143   β†Ύs cress 17172  .rcmulr 17197  0gc0g 17384   /s cqus 17450   Γ—s cxps 17451  Mndcmnd 18657  Grpcgrp 18853  SubGrpcsubg 19037  NrmSGrpcnsg 19038   ~QG cqg 19039   GrpHom cghm 19128  Rngcrng 20047  1rcur 20076  Ringcrg 20128  2Idealc2idl 21096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-imas 17453  df-qus 17454  df-xps 17455  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-sbg 18858  df-subg 19040  df-nsg 19041  df-eqg 19042  df-ghm 19129  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-subrng 20436  df-lss 20769  df-sra 21011  df-rgmod 21012  df-lidl 21057  df-2idl 21097
This theorem is referenced by:  rngqiprngim  21147
  Copyright terms: Public domain W3C validator