| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ecunres | Structured version Visualization version GIF version | ||
| Description: The restricted union coset of 𝐵. (Contributed by Peter Mazsa, 28-Jan-2026.) |
| Ref | Expression |
|---|---|
| ecunres | ⊢ (𝐵 ∈ 𝑉 → [𝐵]((𝑅 ∪ 𝑆) ↾ 𝐴) = ([𝐵](𝑅 ↾ 𝐴) ∪ [𝐵](𝑆 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir 5942 | . . 3 ⊢ ((𝑅 ∪ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ∪ (𝑆 ↾ 𝐴)) | |
| 2 | 1 | eceq2i 8664 | . 2 ⊢ [𝐵]((𝑅 ∪ 𝑆) ↾ 𝐴) = [𝐵]((𝑅 ↾ 𝐴) ∪ (𝑆 ↾ 𝐴)) |
| 3 | ecun 38427 | . 2 ⊢ (𝐵 ∈ 𝑉 → [𝐵]((𝑅 ↾ 𝐴) ∪ (𝑆 ↾ 𝐴)) = ([𝐵](𝑅 ↾ 𝐴) ∪ [𝐵](𝑆 ↾ 𝐴))) | |
| 4 | 2, 3 | eqtrid 2778 | 1 ⊢ (𝐵 ∈ 𝑉 → [𝐵]((𝑅 ∪ 𝑆) ↾ 𝐴) = ([𝐵](𝑅 ↾ 𝐴) ∪ [𝐵](𝑆 ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ↾ cres 5616 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: ecuncnvepres 38429 |
| Copyright terms: Public domain | W3C validator |