| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ecun | Structured version Visualization version GIF version | ||
| Description: The union coset of 𝐴. (Contributed by Peter Mazsa, 28-Jan-2026.) |
| Ref | Expression |
|---|---|
| ecun | ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ∪ 𝑆) = ([𝐴]𝑅 ∪ [𝐴]𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 4255 | . . 3 ⊢ ({𝑥 ∣ 𝐴𝑅𝑥} ∪ {𝑥 ∣ 𝐴𝑆𝑥}) = {𝑥 ∣ (𝐴𝑅𝑥 ∨ 𝐴𝑆𝑥)} | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∣ 𝐴𝑅𝑥} ∪ {𝑥 ∣ 𝐴𝑆𝑥}) = {𝑥 ∣ (𝐴𝑅𝑥 ∨ 𝐴𝑆𝑥)}) |
| 3 | dfec2 8625 | . . 3 ⊢ (𝐴 ∈ 𝑉 → [𝐴]𝑅 = {𝑥 ∣ 𝐴𝑅𝑥}) | |
| 4 | dfec2 8625 | . . 3 ⊢ (𝐴 ∈ 𝑉 → [𝐴]𝑆 = {𝑥 ∣ 𝐴𝑆𝑥}) | |
| 5 | 3, 4 | uneq12d 4116 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴]𝑅 ∪ [𝐴]𝑆) = ({𝑥 ∣ 𝐴𝑅𝑥} ∪ {𝑥 ∣ 𝐴𝑆𝑥})) |
| 6 | elecALTV 38313 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐴](𝑅 ∪ 𝑆) ↔ 𝐴(𝑅 ∪ 𝑆)𝑥)) | |
| 7 | 6 | elvd 3442 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ∪ 𝑆) ↔ 𝐴(𝑅 ∪ 𝑆)𝑥)) |
| 8 | brun 5140 | . . . 4 ⊢ (𝐴(𝑅 ∪ 𝑆)𝑥 ↔ (𝐴𝑅𝑥 ∨ 𝐴𝑆𝑥)) | |
| 9 | 7, 8 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ∪ 𝑆) ↔ (𝐴𝑅𝑥 ∨ 𝐴𝑆𝑥))) |
| 10 | 9 | eqabdv 2864 | . 2 ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ∪ 𝑆) = {𝑥 ∣ (𝐴𝑅𝑥 ∨ 𝐴𝑆𝑥)}) |
| 11 | 2, 5, 10 | 3eqtr4rd 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ∪ 𝑆) = ([𝐴]𝑅 ∪ [𝐴]𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∪ cun 3895 class class class wbr 5089 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: ecunres 38428 |
| Copyright terms: Public domain | W3C validator |