Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecun Structured version   Visualization version   GIF version

Theorem ecun 38427
Description: The union coset of 𝐴. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
ecun (𝐴𝑉 → [𝐴](𝑅𝑆) = ([𝐴]𝑅 ∪ [𝐴]𝑆))

Proof of Theorem ecun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unab 4255 . . 3 ({𝑥𝐴𝑅𝑥} ∪ {𝑥𝐴𝑆𝑥}) = {𝑥 ∣ (𝐴𝑅𝑥𝐴𝑆𝑥)}
21a1i 11 . 2 (𝐴𝑉 → ({𝑥𝐴𝑅𝑥} ∪ {𝑥𝐴𝑆𝑥}) = {𝑥 ∣ (𝐴𝑅𝑥𝐴𝑆𝑥)})
3 dfec2 8625 . . 3 (𝐴𝑉 → [𝐴]𝑅 = {𝑥𝐴𝑅𝑥})
4 dfec2 8625 . . 3 (𝐴𝑉 → [𝐴]𝑆 = {𝑥𝐴𝑆𝑥})
53, 4uneq12d 4116 . 2 (𝐴𝑉 → ([𝐴]𝑅 ∪ [𝐴]𝑆) = ({𝑥𝐴𝑅𝑥} ∪ {𝑥𝐴𝑆𝑥}))
6 elecALTV 38313 . . . . 5 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝑥))
76elvd 3442 . . . 4 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝑥))
8 brun 5140 . . . 4 (𝐴(𝑅𝑆)𝑥 ↔ (𝐴𝑅𝑥𝐴𝑆𝑥))
97, 8bitrdi 287 . . 3 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ (𝐴𝑅𝑥𝐴𝑆𝑥)))
109eqabdv 2864 . 2 (𝐴𝑉 → [𝐴](𝑅𝑆) = {𝑥 ∣ (𝐴𝑅𝑥𝐴𝑆𝑥)})
112, 5, 103eqtr4rd 2777 1 (𝐴𝑉 → [𝐴](𝑅𝑆) = ([𝐴]𝑅 ∪ [𝐴]𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cun 3895   class class class wbr 5089  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624
This theorem is referenced by:  ecunres  38428
  Copyright terms: Public domain W3C validator