Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecuncnvepres Structured version   Visualization version   GIF version

Theorem ecuncnvepres 38429
Description: The restricted union with converse epsilon relation coset of 𝐵. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
ecuncnvepres (𝐵𝐴 → [𝐵]((𝑅 E ) ↾ 𝐴) = (𝐵 ∪ [𝐵]𝑅))

Proof of Theorem ecuncnvepres
StepHypRef Expression
1 ecunres 38428 . . 3 (𝐵𝐴 → [𝐵]((𝑅 E ) ↾ 𝐴) = ([𝐵](𝑅𝐴) ∪ [𝐵]( E ↾ 𝐴)))
2 elecreseq 8671 . . . 4 (𝐵𝐴 → [𝐵](𝑅𝐴) = [𝐵]𝑅)
3 eccnvepres2 38333 . . . 4 (𝐵𝐴 → [𝐵]( E ↾ 𝐴) = 𝐵)
42, 3uneq12d 4116 . . 3 (𝐵𝐴 → ([𝐵](𝑅𝐴) ∪ [𝐵]( E ↾ 𝐴)) = ([𝐵]𝑅𝐵))
51, 4eqtrd 2766 . 2 (𝐵𝐴 → [𝐵]((𝑅 E ) ↾ 𝐴) = ([𝐵]𝑅𝐵))
6 uncom 4105 . 2 ([𝐵]𝑅𝐵) = (𝐵 ∪ [𝐵]𝑅)
75, 6eqtrdi 2782 1 (𝐵𝐴 → [𝐵]((𝑅 E ) ↾ 𝐴) = (𝐵 ∪ [𝐵]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895   E cep 5513  ccnv 5613  cres 5616  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624
This theorem is referenced by:  dfadjliftmap2  38481  blockadjliftmap  38482
  Copyright terms: Public domain W3C validator