| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ecuncnvepres | Structured version Visualization version GIF version | ||
| Description: The restricted union with converse epsilon relation coset of 𝐵. (Contributed by Peter Mazsa, 28-Jan-2026.) |
| Ref | Expression |
|---|---|
| ecuncnvepres | ⊢ (𝐵 ∈ 𝐴 → [𝐵]((𝑅 ∪ ◡ E ) ↾ 𝐴) = (𝐵 ∪ [𝐵]𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecunres 38428 | . . 3 ⊢ (𝐵 ∈ 𝐴 → [𝐵]((𝑅 ∪ ◡ E ) ↾ 𝐴) = ([𝐵](𝑅 ↾ 𝐴) ∪ [𝐵](◡ E ↾ 𝐴))) | |
| 2 | elecreseq 8671 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) | |
| 3 | eccnvepres2 38333 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = 𝐵) | |
| 4 | 2, 3 | uneq12d 4116 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ([𝐵](𝑅 ↾ 𝐴) ∪ [𝐵](◡ E ↾ 𝐴)) = ([𝐵]𝑅 ∪ 𝐵)) |
| 5 | 1, 4 | eqtrd 2766 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]((𝑅 ∪ ◡ E ) ↾ 𝐴) = ([𝐵]𝑅 ∪ 𝐵)) |
| 6 | uncom 4105 | . 2 ⊢ ([𝐵]𝑅 ∪ 𝐵) = (𝐵 ∪ [𝐵]𝑅) | |
| 7 | 5, 6 | eqtrdi 2782 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]((𝑅 ∪ ◡ E ) ↾ 𝐴) = (𝐵 ∪ [𝐵]𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 E cep 5513 ◡ccnv 5613 ↾ cres 5616 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: dfadjliftmap2 38481 blockadjliftmap 38482 |
| Copyright terms: Public domain | W3C validator |