![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4291 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5700 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5700 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 5700 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | uneq12i 4175 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2772 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 Vcvv 3477 ∪ cun 3960 ∩ cin 3961 × cxp 5686 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-un 3967 df-in 3969 df-res 5700 |
This theorem is referenced by: relresdm1 6052 imaundir 6172 fresaunres2 6780 fvunsn 7198 fvsnun1 7201 fvsnun2 7202 fsnunfv 7206 fsnunres 7207 frrlem12 8320 wfrlem14OLD 8360 domss2 9174 axdc3lem4 10490 fseq1p1m1 13634 hashgval 14368 hashinf 14370 setsres 17211 setscom 17213 setsid 17241 pwssplit1 21075 nosupbnd2lem1 27774 noinfbnd2lem1 27789 noetasuplem2 27793 noetasuplem3 27794 noetasuplem4 27795 noetainflem2 27797 ex-res 30469 padct 32736 eulerpartlemt 34352 poimirlem3 37609 mapfzcons1 42704 diophrw 42746 eldioph2lem1 42747 eldioph2lem2 42748 diophin 42759 pwssplit4 43077 |
Copyright terms: Public domain | W3C validator |