| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4233 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5626 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 5626 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | uneq12i 4113 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2764 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-res 5626 |
| This theorem is referenced by: relresdm1 5981 imaundir 6097 fresaunres2 6695 fvunsn 7113 fvsnun1 7116 fvsnun2 7117 fsnunfv 7121 fsnunres 7122 frrlem12 8227 domss2 9049 axdc3lem4 10344 fseq1p1m1 13498 hashgval 14240 hashinf 14242 setsres 17089 setscom 17091 setsid 17118 pwssplit1 20993 nosupbnd2lem1 27654 noinfbnd2lem1 27669 noetasuplem2 27673 noetasuplem3 27674 noetasuplem4 27675 noetainflem2 27677 ex-res 30421 padct 32701 eulerpartlemt 34384 poimirlem3 37673 ecunres 38428 mapfzcons1 42820 diophrw 42862 eldioph2lem1 42863 eldioph2lem2 42864 diophin 42875 pwssplit4 43192 |
| Copyright terms: Public domain | W3C validator |