Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4206 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5592 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5592 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 5592 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | uneq12i 4091 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-res 5592 |
This theorem is referenced by: imaundir 6043 fresaunres2 6630 fvunsn 7033 fvsnun1 7036 fvsnun2 7037 fsnunfv 7041 fsnunres 7042 frrlem12 8084 wfrlem14OLD 8124 domss2 8872 axdc3lem4 10140 fseq1p1m1 13259 hashgval 13975 hashinf 13977 setsres 16807 setscom 16809 setsid 16837 pwssplit1 20236 ex-res 28706 funresdm1 30845 padct 30956 eulerpartlemt 32238 nosupbnd2lem1 33845 noinfbnd2lem1 33860 noetasuplem2 33864 noetasuplem3 33865 noetasuplem4 33866 noetainflem2 33868 poimirlem3 35707 mapfzcons1 40455 diophrw 40497 eldioph2lem1 40498 eldioph2lem2 40499 diophin 40510 pwssplit4 40830 |
Copyright terms: Public domain | W3C validator |