MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundir Structured version   Visualization version   GIF version

Theorem resundir 5942
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem resundir
StepHypRef Expression
1 indir 4233 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
2 df-res 5626 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5626 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5626 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4uneq12i 4113 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2764 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cun 3895  cin 3896   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-res 5626
This theorem is referenced by:  relresdm1  5981  imaundir  6097  fresaunres2  6695  fvunsn  7113  fvsnun1  7116  fvsnun2  7117  fsnunfv  7121  fsnunres  7122  frrlem12  8227  domss2  9049  axdc3lem4  10344  fseq1p1m1  13498  hashgval  14240  hashinf  14242  setsres  17089  setscom  17091  setsid  17118  pwssplit1  20993  nosupbnd2lem1  27654  noinfbnd2lem1  27669  noetasuplem2  27673  noetasuplem3  27674  noetasuplem4  27675  noetainflem2  27677  ex-res  30421  padct  32701  eulerpartlemt  34384  poimirlem3  37673  ecunres  38428  mapfzcons1  42820  diophrw  42862  eldioph2lem1  42863  eldioph2lem2  42864  diophin  42875  pwssplit4  43192
  Copyright terms: Public domain W3C validator