| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4245 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5643 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5643 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 5643 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | uneq12i 4125 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∪ cun 3909 ∩ cin 3910 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 df-res 5643 |
| This theorem is referenced by: relresdm1 5993 imaundir 6111 fresaunres2 6714 fvunsn 7135 fvsnun1 7138 fvsnun2 7139 fsnunfv 7143 fsnunres 7144 frrlem12 8253 domss2 9077 axdc3lem4 10382 fseq1p1m1 13535 hashgval 14274 hashinf 14276 setsres 17124 setscom 17126 setsid 17153 pwssplit1 20998 nosupbnd2lem1 27660 noinfbnd2lem1 27675 noetasuplem2 27679 noetasuplem3 27680 noetasuplem4 27681 noetainflem2 27683 ex-res 30420 padct 32693 eulerpartlemt 34355 poimirlem3 37610 mapfzcons1 42698 diophrw 42740 eldioph2lem1 42741 eldioph2lem2 42742 diophin 42753 pwssplit4 43071 |
| Copyright terms: Public domain | W3C validator |