MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundir Structured version   Visualization version   GIF version

Theorem resundir 5833
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem resundir
StepHypRef Expression
1 indir 4202 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
2 df-res 5531 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5531 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5531 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4uneq12i 4088 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2831 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3441  cun 3879  cin 3880   × cxp 5517  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-res 5531
This theorem is referenced by:  imaundir  5976  fresaunres2  6524  fvunsn  6918  fvsnun1  6921  fvsnun2  6922  fsnunfv  6926  fsnunres  6927  wfrlem14  7951  domss2  8660  axdc3lem4  9864  fseq1p1m1  12976  hashgval  13689  hashinf  13691  setsres  16517  setscom  16519  setsid  16530  pwssplit1  19824  ex-res  28226  funresdm1  30368  padct  30481  eulerpartlemt  31739  frrlem12  33247  nosupbnd2lem1  33328  noetalem2  33331  noetalem3  33332  poimirlem3  35060  mapfzcons1  39658  diophrw  39700  eldioph2lem1  39701  eldioph2lem2  39702  diophin  39713  pwssplit4  40033
  Copyright terms: Public domain W3C validator