| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4237 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5631 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5631 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 5631 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | uneq12i 4117 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∪ cun 3901 ∩ cin 3902 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-res 5631 |
| This theorem is referenced by: relresdm1 5984 imaundir 6099 fresaunres2 6696 fvunsn 7115 fvsnun1 7118 fvsnun2 7119 fsnunfv 7123 fsnunres 7124 frrlem12 8230 domss2 9053 axdc3lem4 10347 fseq1p1m1 13501 hashgval 14240 hashinf 14242 setsres 17089 setscom 17091 setsid 17118 pwssplit1 20963 nosupbnd2lem1 27625 noinfbnd2lem1 27640 noetasuplem2 27644 noetasuplem3 27645 noetasuplem4 27646 noetainflem2 27648 ex-res 30385 padct 32663 eulerpartlemt 34345 poimirlem3 37613 mapfzcons1 42700 diophrw 42742 eldioph2lem1 42743 eldioph2lem2 42744 diophin 42755 pwssplit4 43072 |
| Copyright terms: Public domain | W3C validator |