| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4261 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5666 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5666 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 5666 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | uneq12i 4141 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2768 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∪ cun 3924 ∩ cin 3925 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-un 3931 df-in 3933 df-res 5666 |
| This theorem is referenced by: relresdm1 6020 imaundir 6139 fresaunres2 6749 fvunsn 7170 fvsnun1 7173 fvsnun2 7174 fsnunfv 7178 fsnunres 7179 frrlem12 8294 wfrlem14OLD 8334 domss2 9148 axdc3lem4 10465 fseq1p1m1 13613 hashgval 14349 hashinf 14351 setsres 17195 setscom 17197 setsid 17224 pwssplit1 21015 nosupbnd2lem1 27677 noinfbnd2lem1 27692 noetasuplem2 27696 noetasuplem3 27697 noetasuplem4 27698 noetainflem2 27700 ex-res 30368 padct 32643 eulerpartlemt 34349 poimirlem3 37593 mapfzcons1 42687 diophrw 42729 eldioph2lem1 42730 eldioph2lem2 42731 diophin 42742 pwssplit4 43060 |
| Copyright terms: Public domain | W3C validator |