![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4305 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5712 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5712 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 5712 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | uneq12i 4189 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2778 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-res 5712 |
This theorem is referenced by: relresdm1 6062 imaundir 6182 fresaunres2 6793 fvunsn 7213 fvsnun1 7216 fvsnun2 7217 fsnunfv 7221 fsnunres 7222 frrlem12 8338 wfrlem14OLD 8378 domss2 9202 axdc3lem4 10522 fseq1p1m1 13658 hashgval 14382 hashinf 14384 setsres 17225 setscom 17227 setsid 17255 pwssplit1 21081 nosupbnd2lem1 27778 noinfbnd2lem1 27793 noetasuplem2 27797 noetasuplem3 27798 noetasuplem4 27799 noetainflem2 27801 ex-res 30473 padct 32733 eulerpartlemt 34336 poimirlem3 37583 mapfzcons1 42673 diophrw 42715 eldioph2lem1 42716 eldioph2lem2 42717 diophin 42728 pwssplit4 43046 |
Copyright terms: Public domain | W3C validator |