Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4209 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5601 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5601 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 5601 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | uneq12i 4095 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∪ cun 3885 ∩ cin 3886 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-in 3894 df-res 5601 |
This theorem is referenced by: imaundir 6054 fresaunres2 6646 fvunsn 7051 fvsnun1 7054 fvsnun2 7055 fsnunfv 7059 fsnunres 7060 frrlem12 8113 wfrlem14OLD 8153 domss2 8923 axdc3lem4 10209 fseq1p1m1 13330 hashgval 14047 hashinf 14049 setsres 16879 setscom 16881 setsid 16909 pwssplit1 20321 ex-res 28805 funresdm1 30944 padct 31054 eulerpartlemt 32338 nosupbnd2lem1 33918 noinfbnd2lem1 33933 noetasuplem2 33937 noetasuplem3 33938 noetasuplem4 33939 noetainflem2 33941 poimirlem3 35780 mapfzcons1 40539 diophrw 40581 eldioph2lem1 40582 eldioph2lem2 40583 diophin 40594 pwssplit4 40914 |
Copyright terms: Public domain | W3C validator |