Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcnvintabd Structured version   Visualization version   GIF version

Theorem cnvcnvintabd 41964
Description: Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Hypothesis
Ref Expression
cnvcnvintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
cnvcnvintabd (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem cnvcnvintabd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvcnv 6148 . . . . . . . . . 10 𝑥 = (𝑥 ∩ (V × V))
21eleq2i 2826 . . . . . . . . 9 (𝑦𝑥𝑦 ∈ (𝑥 ∩ (V × V)))
3 elin 3930 . . . . . . . . . 10 (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ (𝑦𝑥𝑦 ∈ (V × V)))
43rbaib 540 . . . . . . . . 9 (𝑦 ∈ (V × V) → (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ 𝑦𝑥))
52, 4bitrid 283 . . . . . . . 8 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
65bicomd 222 . . . . . . 7 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
76imbi2d 341 . . . . . 6 (𝑦 ∈ (V × V) → ((𝜓𝑦𝑥) ↔ (𝜓𝑦𝑥)))
87albidv 1924 . . . . 5 (𝑦 ∈ (V × V) → (∀𝑥(𝜓𝑦𝑥) ↔ ∀𝑥(𝜓𝑦𝑥)))
98pm5.32i 576 . . . 4 ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
10 cnvcnvintabd.x . . . . . . 7 (𝜑 → ∃𝑥𝜓)
11 pm5.5 362 . . . . . . 7 (∃𝑥𝜓 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1210, 11syl 17 . . . . . 6 (𝜑 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1312bicomd 222 . . . . 5 (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓𝑦 ∈ (V × V))))
1413anbi1d 631 . . . 4 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
159, 14bitrid 283 . . 3 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
16 elcnvcnvintab 41946 . . 3 (𝑦 {𝑥𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
17 vex 3451 . . . . . 6 𝑥 ∈ V
18 cnvexg 7865 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
19 cnvexg 7865 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
2017, 18, 19mp2b 10 . . . . 5 𝑥 ∈ V
21 relcnv 6060 . . . . . 6 Rel 𝑥
22 df-rel 5644 . . . . . 6 (Rel 𝑥𝑥 ⊆ (V × V))
2321, 22mpbi 229 . . . . 5 𝑥 ⊆ (V × V)
2420, 23elmapintrab 41940 . . . 4 (𝑦 ∈ V → (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
2524elv 3453 . . 3 (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥)))
2615, 16, 253bitr4g 314 . 2 (𝜑 → (𝑦 {𝑥𝜓} ↔ 𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)}))
2726eqrdv 2731 1 (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  {cab 2710  {crab 3406  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4564   cint 4911   × cxp 5635  ccnv 5636  Rel wrel 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-cnv 5645  df-dm 5647  df-rn 5648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator