Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcnvintabd Structured version   Visualization version   GIF version

Theorem cnvcnvintabd 40300
Description: Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Hypothesis
Ref Expression
cnvcnvintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
cnvcnvintabd (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem cnvcnvintabd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvcnv 6016 . . . . . . . . . 10 𝑥 = (𝑥 ∩ (V × V))
21eleq2i 2881 . . . . . . . . 9 (𝑦𝑥𝑦 ∈ (𝑥 ∩ (V × V)))
3 elin 3897 . . . . . . . . . 10 (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ (𝑦𝑥𝑦 ∈ (V × V)))
43rbaib 542 . . . . . . . . 9 (𝑦 ∈ (V × V) → (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ 𝑦𝑥))
52, 4syl5bb 286 . . . . . . . 8 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
65bicomd 226 . . . . . . 7 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
76imbi2d 344 . . . . . 6 (𝑦 ∈ (V × V) → ((𝜓𝑦𝑥) ↔ (𝜓𝑦𝑥)))
87albidv 1921 . . . . 5 (𝑦 ∈ (V × V) → (∀𝑥(𝜓𝑦𝑥) ↔ ∀𝑥(𝜓𝑦𝑥)))
98pm5.32i 578 . . . 4 ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
10 cnvcnvintabd.x . . . . . . 7 (𝜑 → ∃𝑥𝜓)
11 pm5.5 365 . . . . . . 7 (∃𝑥𝜓 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1210, 11syl 17 . . . . . 6 (𝜑 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1312bicomd 226 . . . . 5 (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓𝑦 ∈ (V × V))))
1413anbi1d 632 . . . 4 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
159, 14syl5bb 286 . . 3 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
16 elcnvcnvintab 40282 . . 3 (𝑦 {𝑥𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
17 vex 3444 . . . . . 6 𝑥 ∈ V
18 cnvexg 7611 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
19 cnvexg 7611 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
2017, 18, 19mp2b 10 . . . . 5 𝑥 ∈ V
21 relcnv 5934 . . . . . 6 Rel 𝑥
22 df-rel 5526 . . . . . 6 (Rel 𝑥𝑥 ⊆ (V × V))
2321, 22mpbi 233 . . . . 5 𝑥 ⊆ (V × V)
2420, 23elmapintrab 40276 . . . 4 (𝑦 ∈ V → (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
2524elv 3446 . . 3 (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥)))
2615, 16, 253bitr4g 317 . 2 (𝜑 → (𝑦 {𝑥𝜓} ↔ 𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)}))
2726eqrdv 2796 1 (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2776  {crab 3110  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497   cint 4838   × cxp 5517  ccnv 5518  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator