Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcnvintabd Structured version   Visualization version   GIF version

Theorem cnvcnvintabd 38863
Description: Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Hypothesis
Ref Expression
cnvcnvintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
cnvcnvintabd (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem cnvcnvintabd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvcnv 5840 . . . . . . . . . 10 𝑥 = (𝑥 ∩ (V × V))
21eleq2i 2851 . . . . . . . . 9 (𝑦𝑥𝑦 ∈ (𝑥 ∩ (V × V)))
3 elin 4019 . . . . . . . . . 10 (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ (𝑦𝑥𝑦 ∈ (V × V)))
43rbaib 534 . . . . . . . . 9 (𝑦 ∈ (V × V) → (𝑦 ∈ (𝑥 ∩ (V × V)) ↔ 𝑦𝑥))
52, 4syl5bb 275 . . . . . . . 8 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
65bicomd 215 . . . . . . 7 (𝑦 ∈ (V × V) → (𝑦𝑥𝑦𝑥))
76imbi2d 332 . . . . . 6 (𝑦 ∈ (V × V) → ((𝜓𝑦𝑥) ↔ (𝜓𝑦𝑥)))
87albidv 1963 . . . . 5 (𝑦 ∈ (V × V) → (∀𝑥(𝜓𝑦𝑥) ↔ ∀𝑥(𝜓𝑦𝑥)))
98pm5.32i 570 . . . 4 ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
10 cnvcnvintabd.x . . . . . . 7 (𝜑 → ∃𝑥𝜓)
11 pm5.5 353 . . . . . . 7 (∃𝑥𝜓 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1210, 11syl 17 . . . . . 6 (𝜑 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
1312bicomd 215 . . . . 5 (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓𝑦 ∈ (V × V))))
1413anbi1d 623 . . . 4 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
159, 14syl5bb 275 . . 3 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
16 elcnvcnvintab 38845 . . 3 (𝑦 {𝑥𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
17 vex 3401 . . . 4 𝑦 ∈ V
18 vex 3401 . . . . . 6 𝑥 ∈ V
19 cnvexg 7391 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
20 cnvexg 7391 . . . . . 6 (𝑥 ∈ V → 𝑥 ∈ V)
2118, 19, 20mp2b 10 . . . . 5 𝑥 ∈ V
22 relcnv 5757 . . . . . 6 Rel 𝑥
23 df-rel 5362 . . . . . 6 (Rel 𝑥𝑥 ⊆ (V × V))
2422, 23mpbi 222 . . . . 5 𝑥 ⊆ (V × V)
2521, 24elmapintrab 38839 . . . 4 (𝑦 ∈ V → (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
2617, 25ax-mp 5 . . 3 (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥)))
2715, 16, 263bitr4g 306 . 2 (𝜑 → (𝑦 {𝑥𝜓} ↔ 𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)}))
2827eqrdv 2776 1 (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1599   = wceq 1601  wex 1823  wcel 2107  {cab 2763  {crab 3094  Vcvv 3398  cin 3791  wss 3792  𝒫 cpw 4379   cint 4710   × cxp 5353  ccnv 5354  Rel wrel 5360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-int 4711  df-br 4887  df-opab 4949  df-xp 5361  df-rel 5362  df-cnv 5363  df-dm 5365  df-rn 5366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator