Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix2 Structured version   Visualization version   GIF version

Theorem elfix2 34206
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix2.1 Rel 𝑅
Assertion
Ref Expression
elfix2 (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐴 Fix 𝑅𝐴 ∈ V)
2 elfix2.1 . . 3 Rel 𝑅
32brrelex1i 5643 . 2 (𝐴𝑅𝐴𝐴 ∈ V)
4 eleq1 2826 . . 3 (𝑥 = 𝐴 → (𝑥 Fix 𝑅𝐴 Fix 𝑅))
5 breq12 5079 . . . 4 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
65anidms 567 . . 3 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
7 vex 3436 . . . 4 𝑥 ∈ V
87elfix 34205 . . 3 (𝑥 Fix 𝑅𝑥𝑅𝑥)
94, 6, 8vtoclbg 3507 . 2 (𝐴 ∈ V → (𝐴 Fix 𝑅𝐴𝑅𝐴))
101, 3, 9pm5.21nii 380 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  Rel wrel 5594   Fix cfix 34137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-dm 5599  df-fix 34161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator