![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix2 | Structured version Visualization version GIF version |
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
elfix2.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
elfix2 | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 → 𝐴 ∈ V) | |
2 | elfix2.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5751 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ V) |
4 | eleq1 2832 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fix 𝑅 ↔ 𝐴 ∈ Fix 𝑅)) | |
5 | breq12 5171 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
6 | 5 | anidms 566 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) |
7 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | elfix 35859 | . . 3 ⊢ (𝑥 ∈ Fix 𝑅 ↔ 𝑥𝑅𝑥) |
9 | 4, 6, 8 | vtoclbg 3569 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴)) |
10 | 1, 3, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 Rel wrel 5700 Fix cfix 35791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-dm 5705 df-fix 35815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |