| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix2 | Structured version Visualization version GIF version | ||
| Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| elfix2.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| elfix2 | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 → 𝐴 ∈ V) | |
| 2 | elfix2.1 | . . 3 ⊢ Rel 𝑅 | |
| 3 | 2 | brrelex1i 5710 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ V) |
| 4 | eleq1 2822 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fix 𝑅 ↔ 𝐴 ∈ Fix 𝑅)) | |
| 5 | breq12 5124 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
| 6 | 5 | anidms 566 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) |
| 7 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 8 | 7 | elfix 35867 | . . 3 ⊢ (𝑥 ∈ Fix 𝑅 ↔ 𝑥𝑅𝑥) |
| 9 | 4, 6, 8 | vtoclbg 3536 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴)) |
| 10 | 1, 3, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 Rel wrel 5659 Fix cfix 35799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-dm 5664 df-fix 35823 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |