Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix2 | Structured version Visualization version GIF version |
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
elfix2.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
elfix2 | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 → 𝐴 ∈ V) | |
2 | elfix2.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5634 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ V) |
4 | eleq1 2826 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fix 𝑅 ↔ 𝐴 ∈ Fix 𝑅)) | |
5 | breq12 5075 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
6 | 5 | anidms 566 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) |
7 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | elfix 34132 | . . 3 ⊢ (𝑥 ∈ Fix 𝑅 ↔ 𝑥𝑅𝑥) |
9 | 4, 6, 8 | vtoclbg 3497 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴)) |
10 | 1, 3, 9 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 Rel wrel 5585 Fix cfix 34064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-dm 5590 df-fix 34088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |