Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix2 | Structured version Visualization version GIF version |
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
elfix2.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
elfix2 | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3459 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 → 𝐴 ∈ V) | |
2 | elfix2.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5674 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ V) |
4 | eleq1 2824 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fix 𝑅 ↔ 𝐴 ∈ Fix 𝑅)) | |
5 | breq12 5097 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
6 | 5 | anidms 567 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) |
7 | vex 3445 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | elfix 34301 | . . 3 ⊢ (𝑥 ∈ Fix 𝑅 ↔ 𝑥𝑅𝑥) |
9 | 4, 6, 8 | vtoclbg 3516 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴)) |
10 | 1, 3, 9 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3441 class class class wbr 5092 Rel wrel 5625 Fix cfix 34233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-dm 5630 df-fix 34257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |