Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix2 Structured version   Visualization version   GIF version

Theorem elfix2 34302
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix2.1 Rel 𝑅
Assertion
Ref Expression
elfix2 (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴 Fix 𝑅𝐴 ∈ V)
2 elfix2.1 . . 3 Rel 𝑅
32brrelex1i 5674 . 2 (𝐴𝑅𝐴𝐴 ∈ V)
4 eleq1 2824 . . 3 (𝑥 = 𝐴 → (𝑥 Fix 𝑅𝐴 Fix 𝑅))
5 breq12 5097 . . . 4 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
65anidms 567 . . 3 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
7 vex 3445 . . . 4 𝑥 ∈ V
87elfix 34301 . . 3 (𝑥 Fix 𝑅𝑥𝑅𝑥)
94, 6, 8vtoclbg 3516 . 2 (𝐴 ∈ V → (𝐴 Fix 𝑅𝐴𝑅𝐴))
101, 3, 9pm5.21nii 379 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  Vcvv 3441   class class class wbr 5092  Rel wrel 5625   Fix cfix 34233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-id 5518  df-xp 5626  df-rel 5627  df-dm 5630  df-fix 34257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator