![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix2 | Structured version Visualization version GIF version |
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
elfix2.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
elfix2 | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3491 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 → 𝐴 ∈ V) | |
2 | elfix2.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5731 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ V) |
4 | eleq1 2819 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fix 𝑅 ↔ 𝐴 ∈ Fix 𝑅)) | |
5 | breq12 5152 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
6 | 5 | anidms 565 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑥 ↔ 𝐴𝑅𝐴)) |
7 | vex 3476 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | elfix 35179 | . . 3 ⊢ (𝑥 ∈ Fix 𝑅 ↔ 𝑥𝑅𝑥) |
9 | 4, 6, 8 | vtoclbg 3543 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴)) |
10 | 1, 3, 9 | pm5.21nii 377 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 Vcvv 3472 class class class wbr 5147 Rel wrel 5680 Fix cfix 35111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-dm 5685 df-fix 35135 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |