Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix2 Structured version   Visualization version   GIF version

Theorem elfix2 35938
Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix2.1 Rel 𝑅
Assertion
Ref Expression
elfix2 (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐴 Fix 𝑅𝐴 ∈ V)
2 elfix2.1 . . 3 Rel 𝑅
32brrelex1i 5667 . 2 (𝐴𝑅𝐴𝐴 ∈ V)
4 eleq1 2819 . . 3 (𝑥 = 𝐴 → (𝑥 Fix 𝑅𝐴 Fix 𝑅))
5 breq12 5091 . . . 4 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
65anidms 566 . . 3 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
7 vex 3440 . . . 4 𝑥 ∈ V
87elfix 35937 . . 3 (𝑥 Fix 𝑅𝑥𝑅𝑥)
94, 6, 8vtoclbg 3510 . 2 (𝐴 ∈ V → (𝐴 Fix 𝑅𝐴𝑅𝐴))
101, 3, 9pm5.21nii 378 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5086  Rel wrel 5616   Fix cfix 35869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-dm 5621  df-fix 35893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator