![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasngOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elimasng 6118 as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elimasngOLD | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4658 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
2 | 1 | imaeq2d 6089 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵})) |
3 | 2 | eleq2d 2830 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵}))) |
4 | opeq1 4897 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝑧〉 = 〈𝐵, 𝑧〉) | |
5 | 4 | eleq1d 2829 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝑦, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝑧〉 ∈ 𝐴)) |
6 | 3, 5 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴))) |
7 | eleq1 2832 | . . 3 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵}))) | |
8 | opeq2 4898 | . . . 4 ⊢ (𝑧 = 𝐶 → 〈𝐵, 𝑧〉 = 〈𝐵, 𝐶〉) | |
9 | 8 | eleq1d 2829 | . . 3 ⊢ (𝑧 = 𝐶 → (〈𝐵, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
10 | 7, 9 | bibi12d 345 | . 2 ⊢ (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴))) |
11 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
12 | vex 3492 | . . 3 ⊢ 𝑧 ∈ V | |
13 | 11, 12 | elimasn 6119 | . 2 ⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) |
14 | 6, 10, 13 | vtocl2g 3586 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |