MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasngOLD Structured version   Visualization version   GIF version

Theorem elimasngOLD 5987
Description: Obsolete version of elimasng 5985 as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elimasngOLD ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))

Proof of Theorem elimasngOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4568 . . . . 5 (𝑦 = 𝐵 → {𝑦} = {𝐵})
21imaeq2d 5958 . . . 4 (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵}))
32eleq2d 2824 . . 3 (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵})))
4 opeq1 4801 . . . 4 (𝑦 = 𝐵 → ⟨𝑦, 𝑧⟩ = ⟨𝐵, 𝑧⟩)
54eleq1d 2823 . . 3 (𝑦 = 𝐵 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴))
63, 5bibi12d 345 . 2 (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴)))
7 eleq1 2826 . . 3 (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵})))
8 opeq2 4802 . . . 4 (𝑧 = 𝐶 → ⟨𝐵, 𝑧⟩ = ⟨𝐵, 𝐶⟩)
98eleq1d 2823 . . 3 (𝑧 = 𝐶 → (⟨𝐵, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
107, 9bibi12d 345 . 2 (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)))
11 vex 3426 . . 3 𝑦 ∈ V
12 vex 3426 . . 3 𝑧 ∈ V
1311, 12elimasn 5986 . 2 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
146, 10, 13vtocl2g 3500 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558  cop 4564  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator