![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasngOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elimasng 6044 as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elimasngOLD | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4600 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
2 | 1 | imaeq2d 6017 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵})) |
3 | 2 | eleq2d 2820 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵}))) |
4 | opeq1 4834 | . . . 4 ⊢ (𝑦 = 𝐵 → ⟨𝑦, 𝑧⟩ = ⟨𝐵, 𝑧⟩) | |
5 | 4 | eleq1d 2819 | . . 3 ⊢ (𝑦 = 𝐵 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴)) |
6 | 3, 5 | bibi12d 346 | . 2 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴))) |
7 | eleq1 2822 | . . 3 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵}))) | |
8 | opeq2 4835 | . . . 4 ⊢ (𝑧 = 𝐶 → ⟨𝐵, 𝑧⟩ = ⟨𝐵, 𝐶⟩) | |
9 | 8 | eleq1d 2819 | . . 3 ⊢ (𝑧 = 𝐶 → (⟨𝐵, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
10 | 7, 9 | bibi12d 346 | . 2 ⊢ (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))) |
11 | vex 3451 | . . 3 ⊢ 𝑦 ∈ V | |
12 | vex 3451 | . . 3 ⊢ 𝑧 ∈ V | |
13 | 11, 12 | elimasn 6045 | . 2 ⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) |
14 | 6, 10, 13 | vtocl2g 3533 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4590 ⟨cop 4596 “ cima 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-cnv 5645 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |