MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasni Structured version   Visualization version   GIF version

Theorem elimasni 6112
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.)
Assertion
Ref Expression
elimasni (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)

Proof of Theorem elimasni
StepHypRef Expression
1 noel 4344 . . . . 5 ¬ 𝐶 ∈ ∅
2 snprc 4722 . . . . . . . . 9 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 216 . . . . . . . 8 𝐵 ∈ V → {𝐵} = ∅)
43imaeq2d 6080 . . . . . . 7 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅))
5 ima0 6097 . . . . . . 7 (𝐴 “ ∅) = ∅
64, 5eqtrdi 2791 . . . . . 6 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅)
76eleq2d 2825 . . . . 5 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅))
81, 7mtbiri 327 . . . 4 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵}))
98con4i 114 . . 3 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V)
10 elex 3499 . . 3 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V)
119, 10jca 511 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
12 elimasng1 6107 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
1312biimpd 229 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶))
1411, 13mpcom 38 1 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  {csn 4631   class class class wbr 5148  cima 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  dffv2  7004  poimirlem2  37609  poimirlem23  37630
  Copyright terms: Public domain W3C validator