![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasni | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
Ref | Expression |
---|---|
elimasni | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | snprc 4742 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | 2 | biimpi 216 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
4 | 3 | imaeq2d 6089 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅)) |
5 | ima0 6106 | . . . . . . 7 ⊢ (𝐴 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅) |
7 | 6 | eleq2d 2830 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅)) |
8 | 1, 7 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵})) |
9 | 8 | con4i 114 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V) |
10 | elex 3509 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V) | |
11 | 9, 10 | jca 511 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
12 | elimasng1 6116 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | |
13 | 12 | biimpd 229 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)) |
14 | 11, 13 | mpcom 38 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 class class class wbr 5166 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: dffv2 7017 poimirlem2 37582 poimirlem23 37603 |
Copyright terms: Public domain | W3C validator |