![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasni | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
Ref | Expression |
---|---|
elimasni | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4331 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | snprc 4722 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | 2 | biimpi 215 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
4 | 3 | imaeq2d 6060 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅)) |
5 | ima0 6077 | . . . . . . 7 ⊢ (𝐴 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2789 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅) |
7 | 6 | eleq2d 2820 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅)) |
8 | 1, 7 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵})) |
9 | 8 | con4i 114 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V) |
10 | elex 3493 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V) | |
11 | 9, 10 | jca 513 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
12 | elimasng1 6086 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | |
13 | 12 | biimpd 228 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)) |
14 | 11, 13 | mpcom 38 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {csn 4629 class class class wbr 5149 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: dffv2 6987 poimirlem2 36490 poimirlem23 36511 |
Copyright terms: Public domain | W3C validator |