![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasni | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
Ref | Expression |
---|---|
elimasni | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4145 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | snprc 4483 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | 2 | biimpi 208 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
4 | 3 | imaeq2d 5720 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅)) |
5 | ima0 5735 | . . . . . . 7 ⊢ (𝐴 “ ∅) = ∅ | |
6 | 4, 5 | syl6eq 2829 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅) |
7 | 6 | eleq2d 2844 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅)) |
8 | 1, 7 | mtbiri 319 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵})) |
9 | 8 | con4i 114 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V) |
10 | elex 3413 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V) | |
11 | 9, 10 | jca 507 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
12 | elimasng 5745 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
13 | df-br 4887 | . . . 4 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
14 | 12, 13 | syl6bbr 281 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) |
15 | 14 | biimpd 221 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)) |
16 | 11, 15 | mpcom 38 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ∅c0 4140 {csn 4397 〈cop 4403 class class class wbr 4886 “ cima 5358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-xp 5361 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 |
This theorem is referenced by: dffv2 6531 poimirlem2 34021 poimirlem23 34042 |
Copyright terms: Public domain | W3C validator |