Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimasni | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
Ref | Expression |
---|---|
elimasni | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4232 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | snprc 4613 | . . . . . . . . 9 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | 2 | biimpi 219 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
4 | 3 | imaeq2d 5906 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅)) |
5 | ima0 5922 | . . . . . . 7 ⊢ (𝐴 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2809 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅) |
7 | 6 | eleq2d 2837 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅)) |
8 | 1, 7 | mtbiri 330 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵})) |
9 | 8 | con4i 114 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V) |
10 | elex 3428 | . . 3 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V) | |
11 | 9, 10 | jca 515 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
12 | elimasng 5932 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
13 | df-br 5037 | . . . 4 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
14 | 12, 13 | bitr4di 292 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) |
15 | 14 | biimpd 232 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)) |
16 | 11, 15 | mpcom 38 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4227 {csn 4525 〈cop 4531 class class class wbr 5036 “ cima 5531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 |
This theorem is referenced by: dffv2 6752 poimirlem2 35374 poimirlem23 35395 |
Copyright terms: Public domain | W3C validator |