Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6030, remove, and relabel elimasn1 6030 to "elimasn". |
Ref | Expression |
---|---|
elimasn.1 | ⊢ 𝐵 ∈ V |
elimasn.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasn.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elimasn.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | elimasng 6031 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3442 {csn 4578 〈cop 4584 “ cima 5628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-xp 5631 df-cnv 5633 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 |
This theorem is referenced by: elimasngOLD 6033 dfco2 6188 dfco2a 6189 ressn 6228 funfvima3 7173 frxp 8039 marypha1lem 9295 gsum2dlem1 19666 gsum2dlem2 19667 gsum2d 19668 gsum2d2 19670 ovoliunlem1 24772 dmscut 27056 scutf 27057 iunsnima 31243 dfcnv2 31298 gsummpt2co 31593 gsummpt2d 31594 frxp2 34073 frxp3 34079 funpartfun 34382 areaquad 41360 dffrege76 41918 frege97 41939 frege98 41940 frege109 41951 frege110 41952 frege131 41973 frege133 41975 |
Copyright terms: Public domain | W3C validator |