| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6039, remove, and relabel elimasn1 6039 to "elimasn". |
| Ref | Expression |
|---|---|
| elimasn.1 | ⊢ 𝐵 ∈ V |
| elimasn.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasn.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elimasn.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | elimasng 6040 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: dfco2 6194 dfco2a 6195 ressn 6233 funfvima3 7172 frxp 8059 frxp2 8077 frxp3 8084 marypha1lem 9323 gsum2dlem1 19849 gsum2dlem2 19850 gsum2d 19851 gsum2d2 19853 ovoliunlem1 25401 dmscut 27722 scutf 27723 iunsnima 32563 dfcnv2 32619 gsummpt2co 33001 gsummpt2d 33002 gsumfs2d 33008 funpartfun 35921 areaquad 43193 dffrege76 43916 frege97 43937 frege98 43938 frege109 43949 frege110 43950 frege131 43971 frege133 43973 |
| Copyright terms: Public domain | W3C validator |