MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn Structured version   Visualization version   GIF version

Theorem elimasn 6050
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6048, remove, and relabel elimasn1 6048 to "elimasn".
Hypotheses
Ref Expression
elimasn.1 𝐵 ∈ V
elimasn.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)

Proof of Theorem elimasn
StepHypRef Expression
1 elimasn.1 . 2 𝐵 ∈ V
2 elimasn.2 . 2 𝐶 ∈ V
3 elimasng 6049 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3444  {csn 4585  cop 4591  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  dfco2  6206  dfco2a  6207  ressn  6246  funfvima3  7192  frxp  8082  frxp2  8100  frxp3  8107  marypha1lem  9360  gsum2dlem1  19884  gsum2dlem2  19885  gsum2d  19886  gsum2d2  19888  ovoliunlem1  25436  dmscut  27757  scutf  27758  iunsnima  32596  dfcnv2  32650  gsummpt2co  33031  gsummpt2d  33032  gsumfs2d  33038  funpartfun  35924  areaquad  43198  dffrege76  43921  frege97  43942  frege98  43943  frege109  43954  frege110  43955  frege131  43976  frege133  43978
  Copyright terms: Public domain W3C validator