| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6059, remove, and relabel elimasn1 6059 to "elimasn". |
| Ref | Expression |
|---|---|
| elimasn.1 | ⊢ 𝐵 ∈ V |
| elimasn.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasn.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elimasn.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | elimasng 6060 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: dfco2 6218 dfco2a 6219 ressn 6258 funfvima3 7210 frxp 8105 frxp2 8123 frxp3 8130 marypha1lem 9384 gsum2dlem1 19900 gsum2dlem2 19901 gsum2d 19902 gsum2d2 19904 ovoliunlem1 25403 dmscut 27723 scutf 27724 iunsnima 32546 dfcnv2 32600 gsummpt2co 32988 gsummpt2d 32989 gsumfs2d 32995 funpartfun 35931 areaquad 43205 dffrege76 43928 frege97 43949 frege98 43950 frege109 43961 frege110 43962 frege131 43983 frege133 43985 |
| Copyright terms: Public domain | W3C validator |