| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6062, remove, and relabel elimasn1 6062 to "elimasn". |
| Ref | Expression |
|---|---|
| elimasn.1 | ⊢ 𝐵 ∈ V |
| elimasn.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasn.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elimasn.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | elimasng 6063 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: dfco2 6221 dfco2a 6222 ressn 6261 funfvima3 7213 frxp 8108 frxp2 8126 frxp3 8133 marypha1lem 9391 gsum2dlem1 19907 gsum2dlem2 19908 gsum2d 19909 gsum2d2 19911 ovoliunlem1 25410 dmscut 27730 scutf 27731 iunsnima 32553 dfcnv2 32607 gsummpt2co 32995 gsummpt2d 32996 gsumfs2d 33002 funpartfun 35938 areaquad 43212 dffrege76 43935 frege97 43956 frege98 43957 frege109 43968 frege110 43969 frege131 43990 frege133 43992 |
| Copyright terms: Public domain | W3C validator |