MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn Structured version   Visualization version   GIF version

Theorem elimasn 6061
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6059, remove, and relabel elimasn1 6059 to "elimasn".
Hypotheses
Ref Expression
elimasn.1 𝐵 ∈ V
elimasn.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)

Proof of Theorem elimasn
StepHypRef Expression
1 elimasn.1 . 2 𝐵 ∈ V
2 elimasn.2 . 2 𝐶 ∈ V
3 elimasng 6060 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3447  {csn 4589  cop 4595  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  dfco2  6218  dfco2a  6219  ressn  6258  funfvima3  7210  frxp  8105  frxp2  8123  frxp3  8130  marypha1lem  9384  gsum2dlem1  19900  gsum2dlem2  19901  gsum2d  19902  gsum2d2  19904  ovoliunlem1  25403  dmscut  27723  scutf  27724  iunsnima  32546  dfcnv2  32600  gsummpt2co  32988  gsummpt2d  32989  gsumfs2d  32995  funpartfun  35931  areaquad  43205  dffrege76  43928  frege97  43949  frege98  43950  frege109  43961  frege110  43962  frege131  43983  frege133  43985
  Copyright terms: Public domain W3C validator