| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6048, remove, and relabel elimasn1 6048 to "elimasn". |
| Ref | Expression |
|---|---|
| elimasn.1 | ⊢ 𝐵 ∈ V |
| elimasn.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasn.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elimasn.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | elimasng 6049 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: dfco2 6206 dfco2a 6207 ressn 6246 funfvima3 7192 frxp 8082 frxp2 8100 frxp3 8107 marypha1lem 9360 gsum2dlem1 19884 gsum2dlem2 19885 gsum2d 19886 gsum2d2 19888 ovoliunlem1 25436 dmscut 27757 scutf 27758 iunsnima 32596 dfcnv2 32650 gsummpt2co 33031 gsummpt2d 33032 gsumfs2d 33038 funpartfun 35924 areaquad 43198 dffrege76 43921 frege97 43942 frege98 43943 frege109 43954 frege110 43955 frege131 43976 frege133 43978 |
| Copyright terms: Public domain | W3C validator |