Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 5995, remove, and relabel elimasn1 5995 to "elimasn". |
Ref | Expression |
---|---|
elimasn.1 | ⊢ 𝐵 ∈ V |
elimasn.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasn.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elimasn.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | elimasng 5996 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: elimasngOLD 5998 dfco2 6149 dfco2a 6150 ressn 6188 funfvima3 7112 frxp 7967 marypha1lem 9192 gsum2dlem1 19571 gsum2dlem2 19572 gsum2d 19573 gsum2d2 19575 ovoliunlem1 24666 iunsnima 30958 dfcnv2 31013 gsummpt2co 31308 gsummpt2d 31309 frxp2 33791 frxp3 33797 dmscut 34005 scutf 34006 funpartfun 34245 areaquad 41047 dffrege76 41547 frege97 41568 frege98 41569 frege109 41580 frege110 41581 frege131 41602 frege133 41604 |
Copyright terms: Public domain | W3C validator |