MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn Structured version   Visualization version   GIF version

Theorem elimasn 6108
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6106, remove, and relabel elimasn1 6106 to "elimasn".
Hypotheses
Ref Expression
elimasn.1 𝐵 ∈ V
elimasn.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)

Proof of Theorem elimasn
StepHypRef Expression
1 elimasn.1 . 2 𝐵 ∈ V
2 elimasn.2 . 2 𝐶 ∈ V
3 elimasng 6107 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3480  {csn 4626  cop 4632  cima 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698
This theorem is referenced by:  dfco2  6265  dfco2a  6266  ressn  6305  funfvima3  7256  frxp  8151  frxp2  8169  frxp3  8176  marypha1lem  9473  gsum2dlem1  19988  gsum2dlem2  19989  gsum2d  19990  gsum2d2  19992  ovoliunlem1  25537  dmscut  27856  scutf  27857  iunsnima  32630  dfcnv2  32686  gsummpt2co  33051  gsummpt2d  33052  gsumfs2d  33058  funpartfun  35944  areaquad  43228  dffrege76  43952  frege97  43973  frege98  43974  frege109  43985  frege110  43986  frege131  44007  frege133  44009
  Copyright terms: Public domain W3C validator