![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasn | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
elimasn.1 | ⊢ 𝐵 ∈ V |
elimasn.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasn.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | breq2 4892 | . . 3 ⊢ (𝑥 = 𝐶 → (𝐵𝐴𝑥 ↔ 𝐵𝐴𝐶)) | |
3 | elimasn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | imasng 5743 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥} |
6 | 1, 2, 5 | elab2 3562 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) |
7 | df-br 4889 | . 2 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
8 | 6, 7 | bitri 267 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 ∈ wcel 2107 {cab 2763 Vcvv 3398 {csn 4398 〈cop 4404 class class class wbr 4888 “ cima 5360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-xp 5363 df-cnv 5365 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 |
This theorem is referenced by: elimasng 5747 dfco2 5890 dfco2a 5891 ressn 5927 funfvima3 6770 frxp 7570 marypha1lem 8629 gsum2dlem1 18759 gsum2dlem2 18760 gsum2d 18761 gsum2d2 18763 ovoliunlem1 23710 iunsnima 29997 dfcnv2 30046 gsummpt2co 30346 gsummpt2d 30347 dmscut 32511 scutf 32512 funpartfun 32643 areaquad 38770 dffrege76 39199 frege97 39220 frege98 39221 frege109 39232 frege110 39233 frege131 39254 frege133 39256 |
Copyright terms: Public domain | W3C validator |