Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabrenfdioph | Structured version Visualization version GIF version |
Description: Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
Ref | Expression |
---|---|
rabrenfdioph | ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . . 7 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) | |
2 | simplr 766 | . . . . . . 7 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → 𝐹:(1...𝐴)⟶(1...𝐵)) | |
3 | ovex 7362 | . . . . . . . 8 ⊢ (1...𝐴) ∈ V | |
4 | 3 | mapco2 40787 | . . . . . . 7 ⊢ ((𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → (𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴))) |
5 | 1, 2, 4 | syl2anc 584 | . . . . . 6 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → (𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴))) |
6 | 5 | biantrurd 533 | . . . . 5 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → ([(𝑏 ∘ 𝐹) / 𝑎]𝜑 ↔ ((𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴)) ∧ [(𝑏 ∘ 𝐹) / 𝑎]𝜑))) |
7 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑎(ℕ0 ↑m (1...𝐴)) | |
8 | 7 | elrabsf 3774 | . . . . 5 ⊢ ((𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ↔ ((𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴)) ∧ [(𝑏 ∘ 𝐹) / 𝑎]𝜑)) |
9 | 6, 8 | bitr4di 288 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → ([(𝑏 ∘ 𝐹) / 𝑎]𝜑 ↔ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑})) |
10 | 9 | rabbidva 3410 | . . 3 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}}) |
11 | 10 | 3adant3 1131 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}}) |
12 | diophren 40885 | . . 3 ⊢ (({𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴) ∧ 𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵)) | |
13 | 12 | 3coml 1126 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵)) |
14 | 11, 13 | eqeltrd 2837 | 1 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3403 [wsbc 3726 ∘ ccom 5618 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 ↑m cmap 8678 1c1 10965 ℕ0cn0 12326 ...cfz 13332 Diophcdioph 40827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-hash 14138 df-mzpcl 40795 df-mzp 40796 df-dioph 40828 |
This theorem is referenced by: rabren3dioph 40887 |
Copyright terms: Public domain | W3C validator |