![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabrenfdioph | Structured version Visualization version GIF version |
Description: Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
Ref | Expression |
---|---|
rabrenfdioph | ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . . 7 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵))) → 𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵))) | |
2 | simplr 765 | . . . . . . 7 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵))) → 𝐹:(1...𝐴)⟶(1...𝐵)) | |
3 | ovex 7039 | . . . . . . . 8 ⊢ (1...𝐴) ∈ V | |
4 | 3 | mapco2 38747 | . . . . . . 7 ⊢ ((𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → (𝑏 ∘ 𝐹) ∈ (ℕ0 ↑𝑚 (1...𝐴))) |
5 | 1, 2, 4 | syl2anc 584 | . . . . . 6 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵))) → (𝑏 ∘ 𝐹) ∈ (ℕ0 ↑𝑚 (1...𝐴))) |
6 | 5 | biantrurd 533 | . . . . 5 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵))) → ([(𝑏 ∘ 𝐹) / 𝑎]𝜑 ↔ ((𝑏 ∘ 𝐹) ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∧ [(𝑏 ∘ 𝐹) / 𝑎]𝜑))) |
7 | nfcv 2947 | . . . . . 6 ⊢ Ⅎ𝑎(ℕ0 ↑𝑚 (1...𝐴)) | |
8 | 7 | elrabsf 3740 | . . . . 5 ⊢ ((𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑} ↔ ((𝑏 ∘ 𝐹) ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∧ [(𝑏 ∘ 𝐹) / 𝑎]𝜑)) |
9 | 6, 8 | syl6bbr 290 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵))) → ([(𝑏 ∘ 𝐹) / 𝑎]𝜑 ↔ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑})) |
10 | 9 | rabbidva 3419 | . . 3 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑}}) |
11 | 10 | 3adant3 1123 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑}}) |
12 | diophren 38846 | . . 3 ⊢ (({𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴) ∧ 𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵)) | |
13 | 12 | 3coml 1118 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵)) |
14 | 11, 13 | eqeltrd 2881 | 1 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑𝑚 (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 {crab 3107 [wsbc 3701 ∘ ccom 5439 ⟶wf 6213 ‘cfv 6217 (class class class)co 7007 ↑𝑚 cmap 8247 1c1 10373 ℕ0cn0 11734 ...cfz 12731 Diophcdioph 38787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-inf2 8939 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-of 7258 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-oadd 7948 df-er 8130 df-map 8249 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-dju 9165 df-card 9203 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-n0 11735 df-z 11819 df-uz 12083 df-fz 12732 df-hash 13529 df-mzpcl 38755 df-mzp 38756 df-dioph 38788 |
This theorem is referenced by: rabren3dioph 38848 |
Copyright terms: Public domain | W3C validator |