![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabrenfdioph | Structured version Visualization version GIF version |
Description: Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
Ref | Expression |
---|---|
rabrenfdioph | ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) | |
2 | simplr 768 | . . . . . . 7 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → 𝐹:(1...𝐴)⟶(1...𝐵)) | |
3 | ovex 7483 | . . . . . . . 8 ⊢ (1...𝐴) ∈ V | |
4 | 3 | mapco2 42673 | . . . . . . 7 ⊢ ((𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → (𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴))) |
5 | 1, 2, 4 | syl2anc 583 | . . . . . 6 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → (𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴))) |
6 | 5 | biantrurd 532 | . . . . 5 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → ([(𝑏 ∘ 𝐹) / 𝑎]𝜑 ↔ ((𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴)) ∧ [(𝑏 ∘ 𝐹) / 𝑎]𝜑))) |
7 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑎(ℕ0 ↑m (1...𝐴)) | |
8 | 7 | elrabsf 3853 | . . . . 5 ⊢ ((𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ↔ ((𝑏 ∘ 𝐹) ∈ (ℕ0 ↑m (1...𝐴)) ∧ [(𝑏 ∘ 𝐹) / 𝑎]𝜑)) |
9 | 6, 8 | bitr4di 289 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0 ↑m (1...𝐵))) → ([(𝑏 ∘ 𝐹) / 𝑎]𝜑 ↔ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑})) |
10 | 9 | rabbidva 3450 | . . 3 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}}) |
11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}}) |
12 | diophren 42771 | . . 3 ⊢ (({𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴) ∧ 𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵)) | |
13 | 12 | 3coml 1127 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ (𝑏 ∘ 𝐹) ∈ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵)) |
14 | 11, 13 | eqeltrd 2844 | 1 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 [wsbc 3804 ∘ ccom 5704 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ↑m cmap 8886 1c1 11187 ℕ0cn0 12555 ...cfz 13569 Diophcdioph 42713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-oadd 8528 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-dju 9972 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-hash 14382 df-mzpcl 42681 df-mzp 42682 df-dioph 42714 |
This theorem is referenced by: rabren3dioph 42773 |
Copyright terms: Public domain | W3C validator |