Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabrenfdioph Structured version   Visualization version   GIF version

Theorem rabrenfdioph 42818
Description: Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rabrenfdioph ((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ [(𝑏𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵))
Distinct variable groups:   𝜑,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem rabrenfdioph
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0m (1...𝐵))) → 𝑏 ∈ (ℕ0m (1...𝐵)))
2 simplr 769 . . . . . . 7 (((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0m (1...𝐵))) → 𝐹:(1...𝐴)⟶(1...𝐵))
3 ovex 7471 . . . . . . . 8 (1...𝐴) ∈ V
43mapco2 42719 . . . . . . 7 ((𝑏 ∈ (ℕ0m (1...𝐵)) ∧ 𝐹:(1...𝐴)⟶(1...𝐵)) → (𝑏𝐹) ∈ (ℕ0m (1...𝐴)))
51, 2, 4syl2anc 584 . . . . . 6 (((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0m (1...𝐵))) → (𝑏𝐹) ∈ (ℕ0m (1...𝐴)))
65biantrurd 532 . . . . 5 (((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0m (1...𝐵))) → ([(𝑏𝐹) / 𝑎]𝜑 ↔ ((𝑏𝐹) ∈ (ℕ0m (1...𝐴)) ∧ [(𝑏𝐹) / 𝑎]𝜑)))
7 nfcv 2905 . . . . . 6 𝑎(ℕ0m (1...𝐴))
87elrabsf 3843 . . . . 5 ((𝑏𝐹) ∈ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑} ↔ ((𝑏𝐹) ∈ (ℕ0m (1...𝐴)) ∧ [(𝑏𝐹) / 𝑎]𝜑))
96, 8bitr4di 289 . . . 4 (((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) ∧ 𝑏 ∈ (ℕ0m (1...𝐵))) → ([(𝑏𝐹) / 𝑎]𝜑 ↔ (𝑏𝐹) ∈ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑}))
109rabbidva 3443 . . 3 ((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ [(𝑏𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ (𝑏𝐹) ∈ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑}})
11103adant3 1133 . 2 ((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ [(𝑏𝐹) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ (𝑏𝐹) ∈ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑}})
12 diophren 42817 . . 3 (({𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴) ∧ 𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵)) → {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ (𝑏𝐹) ∈ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵))
13123coml 1128 . 2 ((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ (𝑏𝐹) ∈ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑}} ∈ (Dioph‘𝐵))
1411, 13eqeltrd 2841 1 ((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0m (1...𝐵)) ∣ [(𝑏𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  {crab 3436  [wsbc 3794  ccom 5697  wf 6565  cfv 6569  (class class class)co 7438  m cmap 8874  1c1 11163  0cn0 12533  ...cfz 13553  Diophcdioph 42759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-oadd 8518  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-dju 9948  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-hash 14376  df-mzpcl 42727  df-mzp 42728  df-dioph 42760
This theorem is referenced by:  rabren3dioph  42819
  Copyright terms: Public domain W3C validator