Step | Hyp | Ref
| Expression |
1 | | dfss3 3914 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}) |
2 | | nfcv 2909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐴 |
3 | 2 | elrabsf 3768 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜑)) |
4 | 3 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → [𝑧 / 𝑦]𝜑) |
5 | 4 | ralimi 3089 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑) |
6 | 1, 5 | sylbi 216 |
. . . . . . . 8
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑) |
7 | | nfv 1921 |
. . . . . . . . . 10
⊢
Ⅎ𝑦((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) |
8 | | nfcv 2909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦Pred(𝑅, 𝐴, 𝑤) |
9 | | nfsbc1v 3740 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦[𝑧 / 𝑦]𝜑 |
10 | 8, 9 | nfralw 3152 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 |
11 | | nfsbc1v 3740 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 |
12 | 10, 11 | nfim 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑) |
13 | 7, 12 | nfim 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑦(((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)) |
14 | | eleq1w 2823 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
15 | 14 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) ↔ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴))) |
16 | | predeq3 6205 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤)) |
17 | 16 | raleqdv 3347 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)) |
18 | | sbceq1a 3731 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑)) |
19 | 17, 18 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑))) |
20 | 15, 19 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ↔ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)))) |
21 | | frpoinsg.1 |
. . . . . . . . 9
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
22 | 13, 20, 21 | chvarfv 2237 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)) |
23 | 6, 22 | syl5 34 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → [𝑤 / 𝑦]𝜑)) |
24 | | simpr 485 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) |
25 | 23, 24 | jctild 526 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑦]𝜑))) |
26 | 2 | elrabsf 3768 |
. . . . . 6
⊢ (𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑦]𝜑)) |
27 | 25, 26 | syl6ibr 251 |
. . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑})) |
28 | 27 | ralrimiva 3110 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑})) |
29 | | ssrab2 4018 |
. . . 4
⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
30 | 28, 29 | jctil 520 |
. . 3
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ({𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}))) |
31 | | frpoind 6244 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ ({𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}))) → 𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑}) |
32 | 30, 31 | mpdan 684 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑}) |
33 | | rabid2 3313 |
. 2
⊢ (𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝐴 𝜑) |
34 | 32, 33 | sylib 217 |
1
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |