MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoinsg Structured version   Visualization version   GIF version

Theorem frpoinsg 6231
Description: Well-Founded Induction Schema (variant). If a property passes from all elements less than 𝑦 of a well-founded set-like partial order class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2022.)
Hypothesis
Ref Expression
frpoinsg.1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
frpoinsg ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem frpoinsg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3905 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑})
2 nfcv 2906 . . . . . . . . . . . 12 𝑦𝐴
32elrabsf 3759 . . . . . . . . . . 11 (𝑧 ∈ {𝑦𝐴𝜑} ↔ (𝑧𝐴[𝑧 / 𝑦]𝜑))
43simprbi 496 . . . . . . . . . 10 (𝑧 ∈ {𝑦𝐴𝜑} → [𝑧 / 𝑦]𝜑)
54ralimi 3086 . . . . . . . . 9 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
61, 5sylbi 216 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
7 nfv 1918 . . . . . . . . . 10 𝑦((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴)
8 nfcv 2906 . . . . . . . . . . . 12 𝑦Pred(𝑅, 𝐴, 𝑤)
9 nfsbc1v 3731 . . . . . . . . . . . 12 𝑦[𝑧 / 𝑦]𝜑
108, 9nfralw 3149 . . . . . . . . . . 11 𝑦𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑
11 nfsbc1v 3731 . . . . . . . . . . 11 𝑦[𝑤 / 𝑦]𝜑
1210, 11nfim 1900 . . . . . . . . . 10 𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)
137, 12nfim 1900 . . . . . . . . 9 𝑦(((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
14 eleq1w 2821 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
1514anbi2d 628 . . . . . . . . . 10 (𝑦 = 𝑤 → (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ↔ ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴)))
16 predeq3 6195 . . . . . . . . . . . 12 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1716raleqdv 3339 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑))
18 sbceq1a 3722 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝜑[𝑤 / 𝑦]𝜑))
1917, 18imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)))
2015, 19imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑤 → ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑)) ↔ (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))))
21 frpoinsg.1 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
2213, 20, 21chvarfv 2236 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
236, 22syl5 34 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → [𝑤 / 𝑦]𝜑))
24 simpr 484 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → 𝑤𝐴)
2523, 24jctild 525 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → (𝑤𝐴[𝑤 / 𝑦]𝜑)))
262elrabsf 3759 . . . . . 6 (𝑤 ∈ {𝑦𝐴𝜑} ↔ (𝑤𝐴[𝑤 / 𝑦]𝜑))
2725, 26syl6ibr 251 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
2827ralrimiva 3107 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
29 ssrab2 4009 . . . 4 {𝑦𝐴𝜑} ⊆ 𝐴
3028, 29jctil 519 . . 3 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑})))
31 frpoind 6230 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))) → 𝐴 = {𝑦𝐴𝜑})
3230, 31mpdan 683 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝐴 = {𝑦𝐴𝜑})
33 rabid2 3307 . 2 (𝐴 = {𝑦𝐴𝜑} ↔ ∀𝑦𝐴 𝜑)
3432, 33sylib 217 1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  [wsbc 3711  wss 3883   Po wpo 5492   Fr wfr 5532   Se wse 5533  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-po 5494  df-fr 5535  df-se 5536  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191
This theorem is referenced by:  frpoins2fg  6232  wfisg  6241
  Copyright terms: Public domain W3C validator