| Step | Hyp | Ref
| Expression |
| 1 | | dfss3 3954 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}) |
| 2 | | nfcv 2897 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐴 |
| 3 | 2 | elrabsf 3818 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜑)) |
| 4 | 3 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → [𝑧 / 𝑦]𝜑) |
| 5 | 4 | ralimi 3072 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑) |
| 6 | 1, 5 | sylbi 217 |
. . . . . . . 8
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑) |
| 7 | | nfv 1913 |
. . . . . . . . . 10
⊢
Ⅎ𝑦((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) |
| 8 | | nfcv 2897 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦Pred(𝑅, 𝐴, 𝑤) |
| 9 | | nfsbc1v 3792 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦[𝑧 / 𝑦]𝜑 |
| 10 | 8, 9 | nfralw 3295 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 |
| 11 | | nfsbc1v 3792 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 |
| 12 | 10, 11 | nfim 1895 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑) |
| 13 | 7, 12 | nfim 1895 |
. . . . . . . . 9
⊢
Ⅎ𝑦(((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)) |
| 14 | | eleq1w 2816 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 15 | 14 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) ↔ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴))) |
| 16 | | predeq3 6307 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤)) |
| 17 | 16 | raleqdv 3310 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)) |
| 18 | | sbceq1a 3783 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑)) |
| 19 | 17, 18 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑))) |
| 20 | 15, 19 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ↔ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)))) |
| 21 | | frpoinsg.1 |
. . . . . . . . 9
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
| 22 | 13, 20, 21 | chvarfv 2239 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)) |
| 23 | 6, 22 | syl5 34 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → [𝑤 / 𝑦]𝜑)) |
| 24 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) |
| 25 | 23, 24 | jctild 525 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑦]𝜑))) |
| 26 | 2 | elrabsf 3818 |
. . . . . 6
⊢ (𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑦]𝜑)) |
| 27 | 25, 26 | imbitrrdi 252 |
. . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑤 ∈ 𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑})) |
| 28 | 27 | ralrimiva 3133 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑})) |
| 29 | | ssrab2 4062 |
. . . 4
⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| 30 | 28, 29 | jctil 519 |
. . 3
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ({𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}))) |
| 31 | | frpoind 6344 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ ({𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}))) → 𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑}) |
| 32 | 30, 31 | mpdan 687 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑}) |
| 33 | | rabid2 3454 |
. 2
⊢ (𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝐴 𝜑) |
| 34 | 32, 33 | sylib 218 |
1
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |