MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoinsg Structured version   Visualization version   GIF version

Theorem frpoinsg 6246
Description: Well-Founded Induction Schema (variant). If a property passes from all elements less than 𝑦 of a well-founded set-like partial order class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2022.)
Hypothesis
Ref Expression
frpoinsg.1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
frpoinsg ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem frpoinsg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3909 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑})
2 nfcv 2907 . . . . . . . . . . . 12 𝑦𝐴
32elrabsf 3764 . . . . . . . . . . 11 (𝑧 ∈ {𝑦𝐴𝜑} ↔ (𝑧𝐴[𝑧 / 𝑦]𝜑))
43simprbi 497 . . . . . . . . . 10 (𝑧 ∈ {𝑦𝐴𝜑} → [𝑧 / 𝑦]𝜑)
54ralimi 3087 . . . . . . . . 9 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
61, 5sylbi 216 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
7 nfv 1917 . . . . . . . . . 10 𝑦((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴)
8 nfcv 2907 . . . . . . . . . . . 12 𝑦Pred(𝑅, 𝐴, 𝑤)
9 nfsbc1v 3736 . . . . . . . . . . . 12 𝑦[𝑧 / 𝑦]𝜑
108, 9nfralw 3151 . . . . . . . . . . 11 𝑦𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑
11 nfsbc1v 3736 . . . . . . . . . . 11 𝑦[𝑤 / 𝑦]𝜑
1210, 11nfim 1899 . . . . . . . . . 10 𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)
137, 12nfim 1899 . . . . . . . . 9 𝑦(((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
14 eleq1w 2821 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
1514anbi2d 629 . . . . . . . . . 10 (𝑦 = 𝑤 → (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ↔ ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴)))
16 predeq3 6206 . . . . . . . . . . . 12 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1716raleqdv 3348 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑))
18 sbceq1a 3727 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝜑[𝑤 / 𝑦]𝜑))
1917, 18imbi12d 345 . . . . . . . . . 10 (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)))
2015, 19imbi12d 345 . . . . . . . . 9 (𝑦 = 𝑤 → ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑)) ↔ (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))))
21 frpoinsg.1 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
2213, 20, 21chvarfv 2233 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
236, 22syl5 34 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → [𝑤 / 𝑦]𝜑))
24 simpr 485 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → 𝑤𝐴)
2523, 24jctild 526 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → (𝑤𝐴[𝑤 / 𝑦]𝜑)))
262elrabsf 3764 . . . . . 6 (𝑤 ∈ {𝑦𝐴𝜑} ↔ (𝑤𝐴[𝑤 / 𝑦]𝜑))
2725, 26syl6ibr 251 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑤𝐴) → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
2827ralrimiva 3103 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
29 ssrab2 4013 . . . 4 {𝑦𝐴𝜑} ⊆ 𝐴
3028, 29jctil 520 . . 3 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑})))
31 frpoind 6245 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))) → 𝐴 = {𝑦𝐴𝜑})
3230, 31mpdan 684 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝐴 = {𝑦𝐴𝜑})
33 rabid2 3314 . 2 (𝐴 = {𝑦𝐴𝜑} ↔ ∀𝑦𝐴 𝜑)
3432, 33sylib 217 1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  [wsbc 3716  wss 3887   Po wpo 5501   Fr wfr 5541   Se wse 5542  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-po 5503  df-fr 5544  df-se 5545  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  frpoins2fg  6247  wfisg  6256
  Copyright terms: Public domain W3C validator