MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6num Structured version   Visualization version   GIF version

Theorem ac6num 10517
Description: A version of ac6 10518 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
ac6num.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6num ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6num
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 5032 . . . . . . . . 9 𝑥 𝑥𝐴 {𝑦𝐵𝜑}
21nfel1 2920 . . . . . . . 8 𝑥 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
3 ssiun2 5052 . . . . . . . . 9 (𝑥𝐴 → {𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑})
4 ssexg 5329 . . . . . . . . . 10 (({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card) → {𝑦𝐵𝜑} ∈ V)
54expcom 413 . . . . . . . . 9 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} → {𝑦𝐵𝜑} ∈ V))
63, 5syl5 34 . . . . . . . 8 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → (𝑥𝐴 → {𝑦𝐵𝜑} ∈ V))
72, 6ralrimi 3255 . . . . . . 7 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
8 dfiun2g 5035 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
97, 8syl 17 . . . . . 6 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
10 eqid 2735 . . . . . . . 8 (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = (𝑥𝐴 ↦ {𝑦𝐵𝜑})
1110rnmpt 5971 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
1211unieqi 4924 . . . . . 6 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
139, 12eqtr4di 2793 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
14 id 22 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
1513, 14eqeltrrd 2840 . . . 4 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
16153ad2ant2 1133 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
17 simp3 1137 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴𝑦𝐵 𝜑)
18 necom 2992 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∅ ≠ {𝑦𝐵𝜑})
19 rabn0 4395 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∃𝑦𝐵 𝜑)
20 df-ne 2939 . . . . . . . 8 (∅ ≠ {𝑦𝐵𝜑} ↔ ¬ ∅ = {𝑦𝐵𝜑})
2118, 19, 203bitr3i 301 . . . . . . 7 (∃𝑦𝐵 𝜑 ↔ ¬ ∅ = {𝑦𝐵𝜑})
2221ralbii 3091 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑})
23 ralnex 3070 . . . . . 6 (∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑} ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2422, 23bitri 275 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2517, 24sylib 218 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
26 0ex 5313 . . . . 5 ∅ ∈ V
2710elrnmpt 5972 . . . . 5 (∅ ∈ V → (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑}))
2826, 27ax-mp 5 . . . 4 (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2925, 28sylnibr 329 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
30 ac5num 10074 . . 3 (( ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card ∧ ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3116, 29, 30syl2anc 584 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
32 ffn 6737 . . . . . 6 (𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) → 𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
3332anim1i 615 . . . . 5 ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3473ad2ant2 1133 . . . . . . 7 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
35 fveq2 6907 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → (𝑔𝑧) = (𝑔‘{𝑦𝐵𝜑}))
36 id 22 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → 𝑧 = {𝑦𝐵𝜑})
3735, 36eleq12d 2833 . . . . . . . 8 (𝑧 = {𝑦𝐵𝜑} → ((𝑔𝑧) ∈ 𝑧 ↔ (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3810, 37ralrnmptw 7114 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3934, 38syl 17 . . . . . 6 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
4039anbi2d 630 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) ↔ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
4133, 40imbitrid 244 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
42 simpl1 1190 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → 𝐴𝑉)
4342mptexd 7244 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∈ V)
44 elrabi 3690 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
4544ralimi 3081 . . . . . . . . 9 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
4645ad2antll 729 . . . . . . . 8 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
47 eqid 2735 . . . . . . . . 9 (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
4847fmpt 7130 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
4946, 48sylib 218 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
50 nfcv 2903 . . . . . . . . . . 11 𝑦𝐵
5150elrabsf 3840 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} ↔ ((𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
5251simprbi 496 . . . . . . . . 9 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5352ralimi 3081 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5453ad2antll 729 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5549, 54jca 511 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
56 feq1 6717 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵))
57 nfmpt1 5256 . . . . . . . . 9 𝑥(𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
5857nfeq2 2921 . . . . . . . 8 𝑥 𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
59 fvex 6920 . . . . . . . . . 10 (𝑓𝑥) ∈ V
60 ac6num.1 . . . . . . . . . 10 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
6159, 60sbcie 3835 . . . . . . . . 9 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
62 fveq1 6906 . . . . . . . . . . 11 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓𝑥) = ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥))
63 fvex 6920 . . . . . . . . . . . 12 (𝑔‘{𝑦𝐵𝜑}) ∈ V
6447fvmpt2 7027 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝑔‘{𝑦𝐵𝜑}) ∈ V) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6563, 64mpan2 691 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6662, 65sylan9eq 2795 . . . . . . . . . 10 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝑓𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6766sbceq1d 3796 . . . . . . . . 9 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6861, 67bitr3id 285 . . . . . . . 8 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝜓[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6958, 68ralbida 3268 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
7056, 69anbi12d 632 . . . . . 6 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓) ↔ ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)))
7143, 55, 70spcedv 3598 . . . . 5 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
7271ex 412 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7341, 72syld 47 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7473exlimdv 1931 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7531, 74mpd 15 1 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  [wsbc 3791  wss 3963  c0 4339   cuni 4912   ciun 4996  cmpt 5231  dom cdm 5689  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-en 8985  df-card 9977
This theorem is referenced by:  ac6  10518  ptcmplem3  24078  poimirlem32  37639
  Copyright terms: Public domain W3C validator