MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6num Structured version   Visualization version   GIF version

Theorem ac6num 10476
Description: A version of ac6 10477 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
ac6num.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6num ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6num
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 5030 . . . . . . . . 9 𝑥 𝑥𝐴 {𝑦𝐵𝜑}
21nfel1 2917 . . . . . . . 8 𝑥 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
3 ssiun2 5049 . . . . . . . . 9 (𝑥𝐴 → {𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑})
4 ssexg 5322 . . . . . . . . . 10 (({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card) → {𝑦𝐵𝜑} ∈ V)
54expcom 412 . . . . . . . . 9 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} → {𝑦𝐵𝜑} ∈ V))
63, 5syl5 34 . . . . . . . 8 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → (𝑥𝐴 → {𝑦𝐵𝜑} ∈ V))
72, 6ralrimi 3252 . . . . . . 7 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
8 dfiun2g 5032 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
97, 8syl 17 . . . . . 6 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
10 eqid 2730 . . . . . . . 8 (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = (𝑥𝐴 ↦ {𝑦𝐵𝜑})
1110rnmpt 5953 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
1211unieqi 4920 . . . . . 6 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
139, 12eqtr4di 2788 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
14 id 22 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
1513, 14eqeltrrd 2832 . . . 4 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
16153ad2ant2 1132 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
17 simp3 1136 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴𝑦𝐵 𝜑)
18 necom 2992 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∅ ≠ {𝑦𝐵𝜑})
19 rabn0 4384 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∃𝑦𝐵 𝜑)
20 df-ne 2939 . . . . . . . 8 (∅ ≠ {𝑦𝐵𝜑} ↔ ¬ ∅ = {𝑦𝐵𝜑})
2118, 19, 203bitr3i 300 . . . . . . 7 (∃𝑦𝐵 𝜑 ↔ ¬ ∅ = {𝑦𝐵𝜑})
2221ralbii 3091 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑})
23 ralnex 3070 . . . . . 6 (∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑} ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2422, 23bitri 274 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2517, 24sylib 217 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
26 0ex 5306 . . . . 5 ∅ ∈ V
2710elrnmpt 5954 . . . . 5 (∅ ∈ V → (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑}))
2826, 27ax-mp 5 . . . 4 (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2925, 28sylnibr 328 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
30 ac5num 10033 . . 3 (( ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card ∧ ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3116, 29, 30syl2anc 582 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
32 ffn 6716 . . . . . 6 (𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) → 𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
3332anim1i 613 . . . . 5 ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3473ad2ant2 1132 . . . . . . 7 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
35 fveq2 6890 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → (𝑔𝑧) = (𝑔‘{𝑦𝐵𝜑}))
36 id 22 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → 𝑧 = {𝑦𝐵𝜑})
3735, 36eleq12d 2825 . . . . . . . 8 (𝑧 = {𝑦𝐵𝜑} → ((𝑔𝑧) ∈ 𝑧 ↔ (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3810, 37ralrnmptw 7094 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3934, 38syl 17 . . . . . 6 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
4039anbi2d 627 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) ↔ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
4133, 40imbitrid 243 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
42 simpl1 1189 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → 𝐴𝑉)
4342mptexd 7227 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∈ V)
44 elrabi 3676 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
4544ralimi 3081 . . . . . . . . 9 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
4645ad2antll 725 . . . . . . . 8 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
47 eqid 2730 . . . . . . . . 9 (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
4847fmpt 7110 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
4946, 48sylib 217 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
50 nfcv 2901 . . . . . . . . . . 11 𝑦𝐵
5150elrabsf 3824 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} ↔ ((𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
5251simprbi 495 . . . . . . . . 9 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5352ralimi 3081 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5453ad2antll 725 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5549, 54jca 510 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
56 feq1 6697 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵))
57 nfmpt1 5255 . . . . . . . . 9 𝑥(𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
5857nfeq2 2918 . . . . . . . 8 𝑥 𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
59 fvex 6903 . . . . . . . . . 10 (𝑓𝑥) ∈ V
60 ac6num.1 . . . . . . . . . 10 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
6159, 60sbcie 3819 . . . . . . . . 9 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
62 fveq1 6889 . . . . . . . . . . 11 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓𝑥) = ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥))
63 fvex 6903 . . . . . . . . . . . 12 (𝑔‘{𝑦𝐵𝜑}) ∈ V
6447fvmpt2 7008 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝑔‘{𝑦𝐵𝜑}) ∈ V) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6563, 64mpan2 687 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6662, 65sylan9eq 2790 . . . . . . . . . 10 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝑓𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6766sbceq1d 3781 . . . . . . . . 9 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6861, 67bitr3id 284 . . . . . . . 8 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝜓[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6958, 68ralbida 3265 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
7056, 69anbi12d 629 . . . . . 6 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓) ↔ ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)))
7143, 55, 70spcedv 3587 . . . . 5 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
7271ex 411 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7341, 72syld 47 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7473exlimdv 1934 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7531, 74mpd 15 1 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  {cab 2707  wne 2938  wral 3059  wrex 3068  {crab 3430  Vcvv 3472  [wsbc 3776  wss 3947  c0 4321   cuni 4907   ciun 4996  cmpt 5230  dom cdm 5675  ran crn 5676   Fn wfn 6537  wf 6538  cfv 6542  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-en 8942  df-card 9936
This theorem is referenced by:  ac6  10477  ptcmplem3  23778  poimirlem32  36823
  Copyright terms: Public domain W3C validator