Step | Hyp | Ref
| Expression |
1 | | nfiu1 4955 |
. . . . . . . . 9
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} |
2 | 1 | nfel1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card |
3 | | ssiun2 4973 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
4 | | ssexg 5242 |
. . . . . . . . . 10
⊢ (({𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) → {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V) |
5 | 4 | expcom 413 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ({𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} → {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V)) |
6 | 3, 5 | syl5 34 |
. . . . . . . 8
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V)) |
7 | 2, 6 | ralrimi 3139 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V) |
8 | | dfiun2g 4957 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}}) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}}) |
10 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
11 | 10 | rnmpt 5853 |
. . . . . . 7
⊢ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}} |
12 | 11 | unieqi 4849 |
. . . . . 6
⊢ ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}} |
13 | 9, 12 | eqtr4di 2797 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
14 | | id 22 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) |
15 | 13, 14 | eqeltrrd 2840 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ dom card) |
16 | 15 | 3ad2ant2 1132 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ dom card) |
17 | | simp3 1136 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
18 | | necom 2996 |
. . . . . . . 8
⊢ ({𝑦 ∈ 𝐵 ∣ 𝜑} ≠ ∅ ↔ ∅ ≠ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
19 | | rabn0 4316 |
. . . . . . . 8
⊢ ({𝑦 ∈ 𝐵 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝐵 𝜑) |
20 | | df-ne 2943 |
. . . . . . . 8
⊢ (∅
≠ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
21 | 18, 19, 20 | 3bitr3i 300 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
22 | 21 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
23 | | ralnex 3163 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
24 | 22, 23 | bitri 274 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
25 | 17, 24 | sylib 217 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ¬ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
26 | | 0ex 5226 |
. . . . 5
⊢ ∅
∈ V |
27 | 10 | elrnmpt 5854 |
. . . . 5
⊢ (∅
∈ V → (∅ ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑})) |
28 | 26, 27 | ax-mp 5 |
. . . 4
⊢ (∅
∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
29 | 25, 28 | sylnibr 328 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ¬ ∅ ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
30 | | ac5num 9723 |
. . 3
⊢ ((∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ dom card ∧ ¬ ∅
∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∃𝑔(𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧)) |
31 | 16, 29, 30 | syl2anc 583 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑔(𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧)) |
32 | | ffn 6584 |
. . . . . 6
⊢ (𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) → 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
33 | 32 | anim1i 614 |
. . . . 5
⊢ ((𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧)) |
34 | 7 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V) |
35 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑔‘𝑧) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
36 | | id 22 |
. . . . . . . . 9
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
37 | 35, 36 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → ((𝑔‘𝑧) ∈ 𝑧 ↔ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
38 | 10, 37 | ralrnmptw 6952 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
39 | 34, 38 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
40 | 39 | anbi2d 628 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) ↔ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑}))) |
41 | 33, 40 | syl5ib 243 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑}))) |
42 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → 𝐴 ∈ 𝑉) |
43 | 42 | mptexd 7082 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∈ V) |
44 | | elrabi 3611 |
. . . . . . . . . 10
⊢ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵) |
45 | 44 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵) |
46 | 45 | ad2antll 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
48 | 47 | fmpt 6966 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵) |
49 | 46, 48 | sylib 217 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵) |
50 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐵 |
51 | 50 | elrabsf 3759 |
. . . . . . . . . 10
⊢ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵 ∧ [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
52 | 51 | simprbi 496 |
. . . . . . . . 9
⊢ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) |
53 | 52 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) |
54 | 53 | ad2antll 725 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) |
55 | 49, 54 | jca 511 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
56 | | feq1 6565 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑓:𝐴⟶𝐵 ↔ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵)) |
57 | | nfmpt1 5178 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
58 | 57 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
59 | | fvex 6769 |
. . . . . . . . . 10
⊢ (𝑓‘𝑥) ∈ V |
60 | | ac6num.1 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
61 | 59, 60 | sbcie 3754 |
. . . . . . . . 9
⊢
([(𝑓‘𝑥) / 𝑦]𝜑 ↔ 𝜓) |
62 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑓‘𝑥) = ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}))‘𝑥)) |
63 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ V |
64 | 47 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ V) → ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}))‘𝑥) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
65 | 63, 64 | mpan2 687 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}))‘𝑥) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
66 | 62, 65 | sylan9eq 2799 |
. . . . . . . . . 10
⊢ ((𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
67 | 66 | sbceq1d 3716 |
. . . . . . . . 9
⊢ ((𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∧ 𝑥 ∈ 𝐴) → ([(𝑓‘𝑥) / 𝑦]𝜑 ↔ [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
68 | 61, 67 | bitr3id 284 |
. . . . . . . 8
⊢ ((𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
69 | 58, 68 | ralbida 3156 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
70 | 56, 69 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑))) |
71 | 43, 55, 70 | spcedv 3527 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
72 | 71 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑}) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
73 | 41, 72 | syld 47 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
74 | 73 | exlimdv 1937 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → (∃𝑔(𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
75 | 31, 74 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |