MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6num Structured version   Visualization version   GIF version

Theorem ac6num 10235
Description: A version of ac6 10236 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
ac6num.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6num ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6num
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 4958 . . . . . . . . 9 𝑥 𝑥𝐴 {𝑦𝐵𝜑}
21nfel1 2923 . . . . . . . 8 𝑥 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
3 ssiun2 4977 . . . . . . . . 9 (𝑥𝐴 → {𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑})
4 ssexg 5247 . . . . . . . . . 10 (({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card) → {𝑦𝐵𝜑} ∈ V)
54expcom 414 . . . . . . . . 9 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} → {𝑦𝐵𝜑} ∈ V))
63, 5syl5 34 . . . . . . . 8 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → (𝑥𝐴 → {𝑦𝐵𝜑} ∈ V))
72, 6ralrimi 3141 . . . . . . 7 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
8 dfiun2g 4960 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
97, 8syl 17 . . . . . 6 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
10 eqid 2738 . . . . . . . 8 (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = (𝑥𝐴 ↦ {𝑦𝐵𝜑})
1110rnmpt 5864 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
1211unieqi 4852 . . . . . 6 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
139, 12eqtr4di 2796 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
14 id 22 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
1513, 14eqeltrrd 2840 . . . 4 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
16153ad2ant2 1133 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
17 simp3 1137 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴𝑦𝐵 𝜑)
18 necom 2997 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∅ ≠ {𝑦𝐵𝜑})
19 rabn0 4319 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∃𝑦𝐵 𝜑)
20 df-ne 2944 . . . . . . . 8 (∅ ≠ {𝑦𝐵𝜑} ↔ ¬ ∅ = {𝑦𝐵𝜑})
2118, 19, 203bitr3i 301 . . . . . . 7 (∃𝑦𝐵 𝜑 ↔ ¬ ∅ = {𝑦𝐵𝜑})
2221ralbii 3092 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑})
23 ralnex 3167 . . . . . 6 (∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑} ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2422, 23bitri 274 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2517, 24sylib 217 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
26 0ex 5231 . . . . 5 ∅ ∈ V
2710elrnmpt 5865 . . . . 5 (∅ ∈ V → (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑}))
2826, 27ax-mp 5 . . . 4 (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2925, 28sylnibr 329 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
30 ac5num 9792 . . 3 (( ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card ∧ ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3116, 29, 30syl2anc 584 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
32 ffn 6600 . . . . . 6 (𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) → 𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
3332anim1i 615 . . . . 5 ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3473ad2ant2 1133 . . . . . . 7 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
35 fveq2 6774 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → (𝑔𝑧) = (𝑔‘{𝑦𝐵𝜑}))
36 id 22 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → 𝑧 = {𝑦𝐵𝜑})
3735, 36eleq12d 2833 . . . . . . . 8 (𝑧 = {𝑦𝐵𝜑} → ((𝑔𝑧) ∈ 𝑧 ↔ (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3810, 37ralrnmptw 6970 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3934, 38syl 17 . . . . . 6 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
4039anbi2d 629 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) ↔ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
4133, 40syl5ib 243 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
42 simpl1 1190 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → 𝐴𝑉)
4342mptexd 7100 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∈ V)
44 elrabi 3618 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
4544ralimi 3087 . . . . . . . . 9 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
4645ad2antll 726 . . . . . . . 8 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
47 eqid 2738 . . . . . . . . 9 (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
4847fmpt 6984 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
4946, 48sylib 217 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
50 nfcv 2907 . . . . . . . . . . 11 𝑦𝐵
5150elrabsf 3764 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} ↔ ((𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
5251simprbi 497 . . . . . . . . 9 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5352ralimi 3087 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5453ad2antll 726 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
5549, 54jca 512 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
56 feq1 6581 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵))
57 nfmpt1 5182 . . . . . . . . 9 𝑥(𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
5857nfeq2 2924 . . . . . . . 8 𝑥 𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
59 fvex 6787 . . . . . . . . . 10 (𝑓𝑥) ∈ V
60 ac6num.1 . . . . . . . . . 10 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
6159, 60sbcie 3759 . . . . . . . . 9 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
62 fveq1 6773 . . . . . . . . . . 11 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓𝑥) = ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥))
63 fvex 6787 . . . . . . . . . . . 12 (𝑔‘{𝑦𝐵𝜑}) ∈ V
6447fvmpt2 6886 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝑔‘{𝑦𝐵𝜑}) ∈ V) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6563, 64mpan2 688 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6662, 65sylan9eq 2798 . . . . . . . . . 10 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝑓𝑥) = (𝑔‘{𝑦𝐵𝜑}))
6766sbceq1d 3721 . . . . . . . . 9 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6861, 67bitr3id 285 . . . . . . . 8 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝜓[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6958, 68ralbida 3159 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
7056, 69anbi12d 631 . . . . . 6 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓) ↔ ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)))
7143, 55, 70spcedv 3537 . . . . 5 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
7271ex 413 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7341, 72syld 47 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7473exlimdv 1936 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
7531, 74mpd 15 1 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  [wsbc 3716  wss 3887  c0 4256   cuni 4839   ciun 4924  cmpt 5157  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-en 8734  df-card 9697
This theorem is referenced by:  ac6  10236  ptcmplem3  23205  poimirlem32  35809
  Copyright terms: Public domain W3C validator