Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . . 4
⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On |
2 | | dfss3 3905 |
. . . . . . . . 9
⊢ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
3 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥On |
4 | 3 | elrabsf 3759 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑)) |
5 | 4 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑) |
6 | 5 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑧 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑) |
7 | 2, 6 | sylbi 216 |
. . . . . . . 8
⊢ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑) |
8 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑧 |
9 | | nfsbc1v 3731 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
10 | 8, 9 | nfralw 3149 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 |
11 | | nfsbc1v 3731 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
12 | 10, 11 | nfim 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
13 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑)) |
14 | | sbceq1a 3722 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
15 | 13, 14 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ↔ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑))) |
16 | 12, 15 | rspc 3539 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → (∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑))) |
17 | 16 | impcom 407 |
. . . . . . . 8
⊢
((∀𝑥 ∈
On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ∧ 𝑧 ∈ On) → (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
18 | 7, 17 | syl5 34 |
. . . . . . 7
⊢
((∀𝑥 ∈
On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → [𝑧 / 𝑥]𝜑)) |
19 | | simpr 484 |
. . . . . . 7
⊢
((∀𝑥 ∈
On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ∧ 𝑧 ∈ On) → 𝑧 ∈ On) |
20 | 18, 19 | jctild 525 |
. . . . . 6
⊢
((∀𝑥 ∈
On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → (𝑧 ∈ On ∧ [𝑧 / 𝑥]𝜑))) |
21 | 3 | elrabsf 3759 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑧 ∈ On ∧ [𝑧 / 𝑥]𝜑)) |
22 | 20, 21 | syl6ibr 251 |
. . . . 5
⊢
((∀𝑥 ∈
On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) |
23 | 22 | ralrimiva 3107 |
. . . 4
⊢
(∀𝑥 ∈ On
(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) |
24 | | tfi 7675 |
. . . 4
⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On) |
25 | 1, 23, 24 | sylancr 586 |
. . 3
⊢
(∀𝑥 ∈ On
(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → {𝑥 ∈ On ∣ 𝜑} = On) |
26 | 25 | eqcomd 2744 |
. 2
⊢
(∀𝑥 ∈ On
(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → On = {𝑥 ∈ On ∣ 𝜑}) |
27 | | rabid2 3307 |
. 2
⊢ (On =
{𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑥 ∈ On 𝜑) |
28 | 26, 27 | sylib 217 |
1
⊢
(∀𝑥 ∈ On
(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥 ∈ On 𝜑) |