MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfisg Structured version   Visualization version   GIF version

Theorem tfisg 7768
Description: A closed form of tfis 7769. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥 ∈ On 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfisg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4025 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 dfss3 3920 . . . . . . . . 9 (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
3 nfcv 2904 . . . . . . . . . . . 12 𝑥On
43elrabsf 3775 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑))
54simprbi 497 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑)
65ralimi 3082 . . . . . . . . 9 (∀𝑦𝑧 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑧 [𝑦 / 𝑥]𝜑)
72, 6sylbi 216 . . . . . . . 8 (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑧 [𝑦 / 𝑥]𝜑)
8 nfcv 2904 . . . . . . . . . . . 12 𝑥𝑧
9 nfsbc1v 3747 . . . . . . . . . . . 12 𝑥[𝑦 / 𝑥]𝜑
108, 9nfralw 3290 . . . . . . . . . . 11 𝑥𝑦𝑧 [𝑦 / 𝑥]𝜑
11 nfsbc1v 3747 . . . . . . . . . . 11 𝑥[𝑧 / 𝑥]𝜑
1210, 11nfim 1898 . . . . . . . . . 10 𝑥(∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
13 raleq 3305 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 [𝑦 / 𝑥]𝜑))
14 sbceq1a 3738 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1513, 14imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑧 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ↔ (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
1612, 15rspc 3558 . . . . . . . . 9 (𝑧 ∈ On → (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
1716impcom 408 . . . . . . . 8 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑))
187, 17syl5 34 . . . . . . 7 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → [𝑧 / 𝑥]𝜑))
19 simpr 485 . . . . . . 7 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → 𝑧 ∈ On)
2018, 19jctild 526 . . . . . 6 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → (𝑧 ∈ On ∧ [𝑧 / 𝑥]𝜑)))
213elrabsf 3775 . . . . . 6 (𝑧 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑧 ∈ On ∧ [𝑧 / 𝑥]𝜑))
2220, 21syl6ibr 251 . . . . 5 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
2322ralrimiva 3139 . . . 4 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
24 tfi 7767 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On)
251, 23, 24sylancr 587 . . 3 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → {𝑥 ∈ On ∣ 𝜑} = On)
2625eqcomd 2742 . 2 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → On = {𝑥 ∈ On ∣ 𝜑})
27 rabid2 3432 . 2 (On = {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑥 ∈ On 𝜑)
2826, 27sylib 217 1 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥 ∈ On 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  {crab 3403  [wsbc 3727  wss 3898  Oncon0 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-tr 5210  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-ord 6305  df-on 6306
This theorem is referenced by:  soseq  8046
  Copyright terms: Public domain W3C validator