![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onminesb | Structured version Visualization version GIF version |
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.) |
Ref | Expression |
---|---|
onminesb | ⊢ (∃𝑥 ∈ On 𝜑 → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 4384 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | |
2 | ssrab2 4076 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | onint 7774 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) | |
4 | 2, 3 | mpan 688 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
5 | 1, 4 | sylbir 234 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
6 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥On | |
7 | 6 | elrabsf 3824 | . . 3 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)) |
8 | 7 | simprbi 497 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) |
9 | 5, 8 | syl 17 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 {crab 3432 [wsbc 3776 ⊆ wss 3947 ∅c0 4321 ∩ cint 4949 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 |
This theorem is referenced by: onminex 7786 |
Copyright terms: Public domain | W3C validator |