Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminesb Structured version   Visualization version   GIF version

Theorem onminesb 7488
 Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.)
Assertion
Ref Expression
onminesb (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)

Proof of Theorem onminesb
StepHypRef Expression
1 rabn0 4312 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
2 ssrab2 4032 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 onint 7485 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
42, 3mpan 689 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
51, 4sylbir 238 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
6 nfcv 2974 . . . 4 𝑥On
76elrabsf 3793 . . 3 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ ( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ [ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑))
87simprbi 500 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → [ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
95, 8syl 17 1 (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2115   ≠ wne 3007  ∃wrex 3127  {crab 3130  [wsbc 3749   ⊆ wss 3910  ∅c0 4266  ∩ cint 4849  Oncon0 6164 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-un 7436 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-br 5040  df-opab 5102  df-tr 5146  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-ord 6167  df-on 6168 This theorem is referenced by:  onminex  7497
 Copyright terms: Public domain W3C validator