MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminesb Structured version   Visualization version   GIF version

Theorem onminesb 7732
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.)
Assertion
Ref Expression
onminesb (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)

Proof of Theorem onminesb
StepHypRef Expression
1 rabn0 4338 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
2 ssrab2 4029 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 onint 7729 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
42, 3mpan 690 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
51, 4sylbir 235 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
6 nfcv 2895 . . . 4 𝑥On
76elrabsf 3783 . . 3 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ ( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ [ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑))
87simprbi 496 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → [ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
95, 8syl 17 1 (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wne 2929  wrex 3057  {crab 3396  [wsbc 3737  wss 3898  c0 4282   cint 4897  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315
This theorem is referenced by:  onminex  7741
  Copyright terms: Public domain W3C validator