| Step | Hyp | Ref
| Expression |
| 1 | | elzs12 28385 |
. 2
⊢ (𝐴 ∈ ℤs[1/2]
↔ ∃𝑎 ∈
ℤs ∃𝑏 ∈ ℕ0s 𝐴 = (𝑎 /su
(2s↑s𝑏))) |
| 2 | | oveq2 7377 |
. . . . . . . . . . . 12
⊢ (𝑐 = 0s →
(2s↑s𝑐) = (2s↑s
0s )) |
| 3 | | 2sno 28346 |
. . . . . . . . . . . . 13
⊢
2s ∈ No |
| 4 | | exps0 28354 |
. . . . . . . . . . . . 13
⊢
(2s ∈ No →
(2s↑s 0s ) = 1s
) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(2s↑s 0s ) =
1s |
| 6 | 2, 5 | eqtrdi 2780 |
. . . . . . . . . . 11
⊢ (𝑐 = 0s →
(2s↑s𝑐) = 1s ) |
| 7 | 6 | oveq2d 7385 |
. . . . . . . . . 10
⊢ (𝑐 = 0s → (𝑎 /su
(2s↑s𝑐)) = (𝑎 /su 1s
)) |
| 8 | 7 | eleq1d 2813 |
. . . . . . . . 9
⊢ (𝑐 = 0s → ((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ↔ (𝑎 /su
1s ) ∈ ℤs)) |
| 9 | 7 | eqeq1d 2731 |
. . . . . . . . . 10
⊢ (𝑐 = 0s → ((𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑎 /su 1s ) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)))) |
| 10 | 9 | 2rexbidv 3200 |
. . . . . . . . 9
⊢ (𝑐 = 0s →
(∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑎
/su 1s ) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 11 | 8, 10 | orbi12d 918 |
. . . . . . . 8
⊢ (𝑐 = 0s → (((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑎 /su 1s ) ∈
ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
1s ) = (((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦))))) |
| 12 | 11 | ralbidv 3156 |
. . . . . . 7
⊢ (𝑐 = 0s →
(∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ∀𝑎 ∈ ℤs
((𝑎 /su
1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
1s ) = (((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦))))) |
| 13 | | oveq2 7377 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑤 → (2s↑s𝑐) =
(2s↑s𝑤)) |
| 14 | 13 | oveq2d 7385 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑤 → (𝑎 /su
(2s↑s𝑐)) = (𝑎 /su
(2s↑s𝑤))) |
| 15 | 14 | eleq1d 2813 |
. . . . . . . . 9
⊢ (𝑐 = 𝑤 → ((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ↔ (𝑎 /su
(2s↑s𝑤)) ∈
ℤs)) |
| 16 | 14 | eqeq1d 2731 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑤 → ((𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 17 | 16 | 2rexbidv 3200 |
. . . . . . . . 9
⊢ (𝑐 = 𝑤 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑎
/su (2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 18 | 15, 17 | orbi12d 918 |
. . . . . . . 8
⊢ (𝑐 = 𝑤 → (((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 19 | 18 | ralbidv 3156 |
. . . . . . 7
⊢ (𝑐 = 𝑤 → (∀𝑎 ∈ ℤs ((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ∀𝑎 ∈ ℤs
((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 20 | | oveq2 7377 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑤 +s 1s ) →
(2s↑s𝑐) = (2s↑s(𝑤 +s 1s
))) |
| 21 | 20 | oveq2d 7385 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑤 +s 1s ) → (𝑎 /su
(2s↑s𝑐)) = (𝑎 /su
(2s↑s(𝑤 +s 1s
)))) |
| 22 | 21 | eleq1d 2813 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑤 +s 1s ) → ((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ↔ (𝑎 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs)) |
| 23 | 21 | eqeq1d 2731 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑤 +s 1s ) → ((𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)))) |
| 24 | 23 | 2rexbidv 3200 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑤 +s 1s ) →
(∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑎
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)))) |
| 25 | 22, 24 | orbi12d 918 |
. . . . . . . . 9
⊢ (𝑐 = (𝑤 +s 1s ) →
(((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑎 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦))))) |
| 26 | 25 | ralbidv 3156 |
. . . . . . . 8
⊢ (𝑐 = (𝑤 +s 1s ) →
(∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ∀𝑎 ∈ ℤs
((𝑎 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦))))) |
| 27 | | oveq1 7376 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝑎 /su
(2s↑s(𝑤 +s 1s ))) = (𝑏 /su
(2s↑s(𝑤 +s 1s
)))) |
| 28 | 27 | eleq1d 2813 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → ((𝑎 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ↔ (𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs)) |
| 29 | 27 | eqeq1d 2731 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)) ↔ (𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)))) |
| 30 | 29 | 2rexbidv 3200 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)))) |
| 31 | | oveq2 7377 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑝 → (2s ·s
𝑥) = (2s
·s 𝑝)) |
| 32 | 31 | oveq1d 7384 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑝 → ((2s ·s
𝑥) +s
1s ) = ((2s ·s 𝑝) +s 1s
)) |
| 33 | 32 | oveq1d 7384 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑝 → (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) = (((2s
·s 𝑝)
+s 1s ) /su
(2s↑s𝑦))) |
| 34 | 33 | eqeq2d 2740 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑝 → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)) ↔ (𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑦)))) |
| 35 | | oveq2 7377 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑞 → (2s↑s𝑦) =
(2s↑s𝑞)) |
| 36 | 35 | oveq2d 7385 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑞 → (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑦)) = (((2s
·s 𝑝)
+s 1s ) /su
(2s↑s𝑞))) |
| 37 | 36 | eqeq2d 2740 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑞 → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑦)) ↔ (𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 38 | 34, 37 | cbvrex2vw 3218 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)) ↔ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))) |
| 39 | 30, 38 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦)) ↔ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 40 | 28, 39 | orbi12d 918 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (((𝑎 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦))) ↔ ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 41 | 40 | cbvralvw 3213 |
. . . . . . . 8
⊢
(∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑥) +s 1s )
/su (2s↑s𝑦))) ↔ ∀𝑏 ∈ ℤs ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 42 | 26, 41 | bitrdi 287 |
. . . . . . 7
⊢ (𝑐 = (𝑤 +s 1s ) →
(∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ∀𝑏 ∈ ℤs
((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 43 | | oveq2 7377 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → (2s↑s𝑐) =
(2s↑s𝑏)) |
| 44 | 43 | oveq2d 7385 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝑎 /su
(2s↑s𝑐)) = (𝑎 /su
(2s↑s𝑏))) |
| 45 | 44 | eleq1d 2813 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ↔ (𝑎 /su
(2s↑s𝑏)) ∈
ℤs)) |
| 46 | 44 | eqeq1d 2731 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → ((𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 47 | 46 | 2rexbidv 3200 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑎
/su (2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 48 | 45, 47 | orbi12d 918 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑎 /su
(2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 49 | 48 | ralbidv 3156 |
. . . . . . 7
⊢ (𝑐 = 𝑏 → (∀𝑎 ∈ ℤs ((𝑎 /su
(2s↑s𝑐)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑐)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ∀𝑎 ∈ ℤs
((𝑎 /su
(2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 50 | | zno 28310 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℤs
→ 𝑎 ∈ No ) |
| 51 | | divs1 28147 |
. . . . . . . . . . 11
⊢ (𝑎 ∈
No → (𝑎
/su 1s ) = 𝑎) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℤs
→ (𝑎
/su 1s ) = 𝑎) |
| 53 | | id 22 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℤs
→ 𝑎 ∈
ℤs) |
| 54 | 52, 53 | eqeltrd 2828 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℤs
→ (𝑎
/su 1s ) ∈ ℤs) |
| 55 | 54 | orcd 873 |
. . . . . . . 8
⊢ (𝑎 ∈ ℤs
→ ((𝑎
/su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑎
/su 1s ) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 56 | 55 | rgen 3046 |
. . . . . . 7
⊢
∀𝑎 ∈
ℤs ((𝑎
/su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑎
/su 1s ) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) |
| 57 | | zseo 28349 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℤs
→ (∃𝑐 ∈
ℤs 𝑏 =
(2s ·s 𝑐) ∨ ∃𝑐 ∈ ℤs 𝑏 = ((2s
·s 𝑐)
+s 1s ))) |
| 58 | | oveq1 7376 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑐 → (𝑎 /su
(2s↑s𝑤)) = (𝑐 /su
(2s↑s𝑤))) |
| 59 | 58 | eleq1d 2813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑐 → ((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ↔ (𝑐 /su
(2s↑s𝑤)) ∈
ℤs)) |
| 60 | 58 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑐 → ((𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 61 | 60 | 2rexbidv 3200 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑐 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs
∃𝑦 ∈
ℕs (𝑐
/su (2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 62 | 59, 61 | orbi12d 918 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑐 → (((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 63 | 62 | rspcv 3581 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ℤs
→ (∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) → ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (∀𝑎 ∈ ℤs ((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) → ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 65 | 33 | eqeq2d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑝 → ((𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑦)))) |
| 66 | 36 | eqeq2d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑞 → ((𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)))) |
| 67 | 65, 66 | cbvrex2vw 3218 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ ∃𝑝 ∈ ℤs
∃𝑞 ∈
ℕs (𝑐
/su (2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞))) |
| 68 | 67 | orbi2i 912 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)))) |
| 69 | 64, 68 | imbitrdi 251 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (∀𝑎 ∈ ℤs ((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) → ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞))))) |
| 70 | 69 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) ∧ ∀𝑎 ∈ ℤs ((𝑎 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) → ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)))) |
| 71 | 70 | an32s 652 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) ∧ 𝑐 ∈ ℤs) → ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)))) |
| 72 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → 𝑤 ∈
ℕ0s) |
| 73 | | expsp1 28356 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((2s ∈ No ∧ 𝑤 ∈ ℕ0s)
→ (2s↑s(𝑤 +s 1s )) =
((2s↑s𝑤) ·s
2s)) |
| 74 | 3, 72, 73 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (2s↑s(𝑤 +s 1s )) =
((2s↑s𝑤) ·s
2s)) |
| 75 | 74 | oveq1d 7384 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((2s↑s(𝑤 +s 1s ))
·s 𝑐) =
(((2s↑s𝑤) ·s 2s)
·s 𝑐)) |
| 76 | | expscl 28358 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((2s ∈ No ∧ 𝑤 ∈ ℕ0s)
→ (2s↑s𝑤) ∈ No
) |
| 77 | 3, 72, 76 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (2s↑s𝑤) ∈ No
) |
| 78 | 3 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → 2s ∈ No
) |
| 79 | | zno 28310 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ ℤs
→ 𝑐 ∈ No ) |
| 80 | 79 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → 𝑐 ∈ No
) |
| 81 | 77, 78, 80 | mulsassd 28110 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s↑s𝑤) ·s
2s) ·s 𝑐) = ((2s↑s𝑤) ·s
(2s ·s 𝑐))) |
| 82 | 75, 81 | eqtrd 2764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((2s↑s(𝑤 +s 1s ))
·s 𝑐) =
((2s↑s𝑤) ·s (2s
·s 𝑐))) |
| 83 | 82 | oveq1d 7384 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s↑s(𝑤 +s 1s ))
·s 𝑐)
/su (2s↑s(𝑤 +s 1s ))) =
(((2s↑s𝑤) ·s (2s
·s 𝑐))
/su (2s↑s(𝑤 +s 1s
)))) |
| 84 | | peano2n0s 28263 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ ℕ0s
→ (𝑤 +s
1s ) ∈ ℕ0s) |
| 85 | 84 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (𝑤 +s 1s ) ∈
ℕ0s) |
| 86 | 80, 85 | pw2divscan3d 28368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s↑s(𝑤 +s 1s ))
·s 𝑐)
/su (2s↑s(𝑤 +s 1s ))) = 𝑐) |
| 87 | 78, 80 | mulscld 28078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (2s ·s 𝑐) ∈
No ) |
| 88 | | expscl 28358 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2s ∈ No ∧ (𝑤 +s 1s )
∈ ℕ0s) → (2s↑s(𝑤 +s 1s ))
∈ No ) |
| 89 | 3, 85, 88 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (2s↑s(𝑤 +s 1s )) ∈ No ) |
| 90 | | 2ne0s 28347 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
2s ≠ 0s |
| 91 | | expsne0 28363 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2s ∈ No ∧
2s ≠ 0s ∧ (𝑤 +s 1s ) ∈
ℕ0s) → (2s↑s(𝑤 +s 1s ))
≠ 0s ) |
| 92 | 3, 90, 85, 91 | mp3an12i 1467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (2s↑s(𝑤 +s 1s )) ≠
0s ) |
| 93 | | pw2recs 28365 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 +s 1s )
∈ ℕ0s → ∃𝑥 ∈ No
((2s↑s(𝑤 +s 1s ))
·s 𝑥) =
1s ) |
| 94 | 85, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ∃𝑥 ∈ No
((2s↑s(𝑤 +s 1s ))
·s 𝑥) =
1s ) |
| 95 | 77, 87, 89, 92, 94 | divsasswd 28146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s↑s𝑤) ·s
(2s ·s 𝑐)) /su
(2s↑s(𝑤 +s 1s ))) =
((2s↑s𝑤) ·s ((2s
·s 𝑐)
/su (2s↑s(𝑤 +s 1s
))))) |
| 96 | 83, 86, 95 | 3eqtr3rd 2773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((2s↑s𝑤) ·s ((2s
·s 𝑐)
/su (2s↑s(𝑤 +s 1s )))) = 𝑐) |
| 97 | 87, 85 | pw2divscld 28366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) ∈ No ) |
| 98 | 80, 97, 72 | pw2divsmuld 28367 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((𝑐 /su
(2s↑s𝑤)) = ((2s ·s
𝑐) /su
(2s↑s(𝑤 +s 1s ))) ↔
((2s↑s𝑤) ·s ((2s
·s 𝑐)
/su (2s↑s(𝑤 +s 1s )))) = 𝑐)) |
| 99 | 96, 98 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (𝑐 /su
(2s↑s𝑤)) = ((2s ·s
𝑐) /su
(2s↑s(𝑤 +s 1s
)))) |
| 100 | 99 | eqcomd 2735 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) = (𝑐 /su
(2s↑s𝑤))) |
| 101 | 100 | eleq1d 2813 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ↔ (𝑐 /su
(2s↑s𝑤)) ∈
ℤs)) |
| 102 | 100 | eqeq1d 2731 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)))) |
| 103 | 102 | 2rexbidv 3200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)))) |
| 104 | 101, 103 | orbi12d 918 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))) ↔ ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞))))) |
| 105 | 104 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) ∧ 𝑐 ∈ ℤs) →
((((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))) ↔ ((𝑐 /su
(2s↑s𝑤)) ∈ ℤs ∨
∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑐 /su
(2s↑s𝑤)) = (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞))))) |
| 106 | 71, 105 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) ∧ 𝑐 ∈ ℤs) →
(((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 107 | | oveq1 7376 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (2s
·s 𝑐)
→ (𝑏
/su (2s↑s(𝑤 +s 1s ))) =
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s
)))) |
| 108 | 107 | eleq1d 2813 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (2s
·s 𝑐)
→ ((𝑏
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ↔ ((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs)) |
| 109 | 107 | eqeq1d 2731 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (2s
·s 𝑐)
→ ((𝑏
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ ((2s
·s 𝑐)
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 110 | 109 | 2rexbidv 3200 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (2s
·s 𝑐)
→ (∃𝑝 ∈
ℤs ∃𝑞 ∈ ℕs (𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 111 | 108, 110 | orbi12d 918 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (2s
·s 𝑐)
→ (((𝑏
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))) ↔ (((2s
·s 𝑐)
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
((2s ·s 𝑐) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 112 | 106, 111 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) ∧ 𝑐 ∈ ℤs) → (𝑏 = (2s
·s 𝑐)
→ ((𝑏
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 113 | 112 | rexlimdva 3134 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) → (∃𝑐 ∈ ℤs
𝑏 = (2s
·s 𝑐)
→ ((𝑏
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 114 | | oveq2 7377 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 𝑐 → (2s ·s
𝑝) = (2s
·s 𝑐)) |
| 115 | 114 | oveq1d 7384 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑐 → ((2s ·s
𝑝) +s
1s ) = ((2s ·s 𝑐) +s 1s
)) |
| 116 | 115 | oveq1d 7384 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑐 → (((2s ·s
𝑝) +s
1s ) /su (2s↑s𝑞)) = (((2s
·s 𝑐)
+s 1s ) /su
(2s↑s𝑞))) |
| 117 | 116 | eqeq2d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑐 → ((((2s
·s 𝑐)
+s 1s ) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ (((2s
·s 𝑐)
+s 1s ) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑐) +s 1s )
/su (2s↑s𝑞)))) |
| 118 | | oveq2 7377 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 = (𝑤 +s 1s ) →
(2s↑s𝑞) = (2s↑s(𝑤 +s 1s
))) |
| 119 | 118 | oveq2d 7385 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = (𝑤 +s 1s ) →
(((2s ·s 𝑐) +s 1s )
/su (2s↑s𝑞)) = (((2s ·s
𝑐) +s
1s ) /su (2s↑s(𝑤 +s 1s
)))) |
| 120 | 119 | eqeq2d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑤 +s 1s ) →
((((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑐) +s 1s )
/su (2s↑s𝑞)) ↔ (((2s
·s 𝑐)
+s 1s ) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s
))))) |
| 121 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → 𝑐 ∈ ℤs) |
| 122 | | n0p1nns 28300 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ℕ0s
→ (𝑤 +s
1s ) ∈ ℕs) |
| 123 | 122 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (𝑤 +s 1s ) ∈
ℕs) |
| 124 | | eqidd 2730 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → (((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s
)))) |
| 125 | 117, 120,
121, 123, 124 | 2rspcedvdw 3599 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))) |
| 126 | 125 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℕ0s
∧ 𝑐 ∈
ℤs) → ((((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 127 | 126 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) ∧ 𝑐 ∈ ℤs) →
((((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 128 | | oveq1 7376 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((2s
·s 𝑐)
+s 1s ) → (𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s
)))) |
| 129 | 128 | eleq1d 2813 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((2s
·s 𝑐)
+s 1s ) → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ↔ (((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) ∈
ℤs)) |
| 130 | 128 | eqeq1d 2731 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((2s
·s 𝑐)
+s 1s ) → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ (((2s
·s 𝑐)
+s 1s ) /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 131 | 130 | 2rexbidv 3200 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((2s
·s 𝑐)
+s 1s ) → (∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)) ↔ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 132 | 129, 131 | orbi12d 918 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((2s
·s 𝑐)
+s 1s ) → (((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))) ↔ ((((2s
·s 𝑐)
+s 1s ) /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(((2s ·s 𝑐) +s 1s )
/su (2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 133 | 127, 132 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) ∧ 𝑐 ∈ ℤs) → (𝑏 = ((2s
·s 𝑐)
+s 1s ) → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 134 | 133 | rexlimdva 3134 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) → (∃𝑐 ∈ ℤs
𝑏 = ((2s
·s 𝑐)
+s 1s ) → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 135 | 113, 134 | jaod 859 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) → ((∃𝑐 ∈ ℤs
𝑏 = (2s
·s 𝑐)
∨ ∃𝑐 ∈
ℤs 𝑏 =
((2s ·s 𝑐) +s 1s )) →
((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 136 | 57, 135 | syl5 34 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) → (𝑏 ∈ ℤs → ((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 137 | 136 | ralrimiv 3124 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ0s
∧ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) → ∀𝑏 ∈ ℤs
((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞)))) |
| 138 | 137 | ex 412 |
. . . . . . 7
⊢ (𝑤 ∈ ℕ0s
→ (∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑤)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑤)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) → ∀𝑏 ∈ ℤs
((𝑏 /su
(2s↑s(𝑤 +s 1s ))) ∈
ℤs ∨ ∃𝑝 ∈ ℤs ∃𝑞 ∈ ℕs
(𝑏 /su
(2s↑s(𝑤 +s 1s ))) =
(((2s ·s 𝑝) +s 1s )
/su (2s↑s𝑞))))) |
| 139 | 12, 19, 42, 49, 56, 138 | n0sind 28265 |
. . . . . 6
⊢ (𝑏 ∈ ℕ0s
→ ∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 140 | | rsp 3223 |
. . . . . 6
⊢
(∀𝑎 ∈
ℤs ((𝑎
/su (2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) → (𝑎 ∈ ℤs → ((𝑎 /su
(2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 141 | 139, 140 | syl 17 |
. . . . 5
⊢ (𝑏 ∈ ℕ0s
→ (𝑎 ∈
ℤs → ((𝑎 /su
(2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 142 | 141 | impcom 407 |
. . . 4
⊢ ((𝑎 ∈ ℤs
∧ 𝑏 ∈
ℕ0s) → ((𝑎 /su
(2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 143 | | eleq1 2816 |
. . . . 5
⊢ (𝐴 = (𝑎 /su
(2s↑s𝑏)) → (𝐴 ∈ ℤs ↔ (𝑎 /su
(2s↑s𝑏)) ∈
ℤs)) |
| 144 | | eqeq1 2733 |
. . . . . 6
⊢ (𝐴 = (𝑎 /su
(2s↑s𝑏)) → (𝐴 = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)) ↔ (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 145 | 144 | 2rexbidv 3200 |
. . . . 5
⊢ (𝐴 = (𝑎 /su
(2s↑s𝑏)) → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
𝐴 = (((2s
·s 𝑥)
+s 1s ) /su
(2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
(𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 146 | 143, 145 | orbi12d 918 |
. . . 4
⊢ (𝐴 = (𝑎 /su
(2s↑s𝑏)) → ((𝐴 ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs 𝐴 = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))) ↔ ((𝑎 /su
(2s↑s𝑏)) ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs (𝑎 /su
(2s↑s𝑏)) = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 147 | 142, 146 | syl5ibrcom 247 |
. . 3
⊢ ((𝑎 ∈ ℤs
∧ 𝑏 ∈
ℕ0s) → (𝐴 = (𝑎 /su
(2s↑s𝑏)) → (𝐴 ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs 𝐴 = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦))))) |
| 148 | 147 | rexlimivv 3177 |
. 2
⊢
(∃𝑎 ∈
ℤs ∃𝑏 ∈ ℕ0s 𝐴 = (𝑎 /su
(2s↑s𝑏)) → (𝐴 ∈ ℤs ∨
∃𝑥 ∈
ℤs ∃𝑦 ∈ ℕs 𝐴 = (((2s ·s
𝑥) +s
1s ) /su (2s↑s𝑦)))) |
| 149 | 1, 148 | sylbi 217 |
1
⊢ (𝐴 ∈ ℤs[1/2]
→ (𝐴 ∈
ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs
𝐴 = (((2s
·s 𝑥)
+s 1s ) /su
(2s↑s𝑦)))) |