MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12zodd Structured version   Visualization version   GIF version

Theorem zs12zodd 28392
Description: A dyadic fraction is either an integer or an odd number divided by a positive power of two. (Contributed by Scott Fenton, 5-Dec-2025.)
Assertion
Ref Expression
zs12zodd (𝐴 ∈ ℤs[1/2] → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem zs12zodd
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28383 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑎 ∈ ℤs𝑏 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑏)))
2 oveq2 7354 . . . . . . . . . . . 12 (𝑐 = 0s → (2ss𝑐) = (2ss 0s ))
3 2sno 28342 . . . . . . . . . . . . 13 2s No
4 exps0 28350 . . . . . . . . . . . . 13 (2s No → (2ss 0s ) = 1s )
53, 4ax-mp 5 . . . . . . . . . . . 12 (2ss 0s ) = 1s
62, 5eqtrdi 2782 . . . . . . . . . . 11 (𝑐 = 0s → (2ss𝑐) = 1s )
76oveq2d 7362 . . . . . . . . . 10 (𝑐 = 0s → (𝑎 /su (2ss𝑐)) = (𝑎 /su 1s ))
87eleq1d 2816 . . . . . . . . 9 (𝑐 = 0s → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su 1s ) ∈ ℤs))
97eqeq1d 2733 . . . . . . . . . 10 (𝑐 = 0s → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1092rexbidv 3197 . . . . . . . . 9 (𝑐 = 0s → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
118, 10orbi12d 918 . . . . . . . 8 (𝑐 = 0s → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
1211ralbidv 3155 . . . . . . 7 (𝑐 = 0s → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
13 oveq2 7354 . . . . . . . . . . 11 (𝑐 = 𝑤 → (2ss𝑐) = (2ss𝑤))
1413oveq2d 7362 . . . . . . . . . 10 (𝑐 = 𝑤 → (𝑎 /su (2ss𝑐)) = (𝑎 /su (2ss𝑤)))
1514eleq1d 2816 . . . . . . . . 9 (𝑐 = 𝑤 → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su (2ss𝑤)) ∈ ℤs))
1614eqeq1d 2733 . . . . . . . . . 10 (𝑐 = 𝑤 → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
17162rexbidv 3197 . . . . . . . . 9 (𝑐 = 𝑤 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1815, 17orbi12d 918 . . . . . . . 8 (𝑐 = 𝑤 → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
1918ralbidv 3155 . . . . . . 7 (𝑐 = 𝑤 → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
20 oveq2 7354 . . . . . . . . . . . 12 (𝑐 = (𝑤 +s 1s ) → (2ss𝑐) = (2ss(𝑤 +s 1s )))
2120oveq2d 7362 . . . . . . . . . . 11 (𝑐 = (𝑤 +s 1s ) → (𝑎 /su (2ss𝑐)) = (𝑎 /su (2ss(𝑤 +s 1s ))))
2221eleq1d 2816 . . . . . . . . . 10 (𝑐 = (𝑤 +s 1s ) → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
2321eqeq1d 2733 . . . . . . . . . . 11 (𝑐 = (𝑤 +s 1s ) → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
24232rexbidv 3197 . . . . . . . . . 10 (𝑐 = (𝑤 +s 1s ) → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
2522, 24orbi12d 918 . . . . . . . . 9 (𝑐 = (𝑤 +s 1s ) → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
2625ralbidv 3155 . . . . . . . 8 (𝑐 = (𝑤 +s 1s ) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
27 oveq1 7353 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 /su (2ss(𝑤 +s 1s ))) = (𝑏 /su (2ss(𝑤 +s 1s ))))
2827eleq1d 2816 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
2927eqeq1d 2733 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
30292rexbidv 3197 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
31 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑥 = 𝑝 → (2s ·s 𝑥) = (2s ·s 𝑝))
3231oveq1d 7361 . . . . . . . . . . . . . 14 (𝑥 = 𝑝 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑝) +s 1s ))
3332oveq1d 7361 . . . . . . . . . . . . 13 (𝑥 = 𝑝 → (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)))
3433eqeq2d 2742 . . . . . . . . . . . 12 (𝑥 = 𝑝 → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦))))
35 oveq2 7354 . . . . . . . . . . . . . 14 (𝑦 = 𝑞 → (2ss𝑦) = (2ss𝑞))
3635oveq2d 7362 . . . . . . . . . . . . 13 (𝑦 = 𝑞 → (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
3736eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = 𝑞 → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)) ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
3834, 37cbvrex2vw 3215 . . . . . . . . . . 11 (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
3930, 38bitrdi 287 . . . . . . . . . 10 (𝑎 = 𝑏 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
4028, 39orbi12d 918 . . . . . . . . 9 (𝑎 = 𝑏 → (((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
4140cbvralvw 3210 . . . . . . . 8 (∀𝑎 ∈ ℤs ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
4226, 41bitrdi 287 . . . . . . 7 (𝑐 = (𝑤 +s 1s ) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
43 oveq2 7354 . . . . . . . . . . 11 (𝑐 = 𝑏 → (2ss𝑐) = (2ss𝑏))
4443oveq2d 7362 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑎 /su (2ss𝑐)) = (𝑎 /su (2ss𝑏)))
4544eleq1d 2816 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su (2ss𝑏)) ∈ ℤs))
4644eqeq1d 2733 . . . . . . . . . 10 (𝑐 = 𝑏 → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
47462rexbidv 3197 . . . . . . . . 9 (𝑐 = 𝑏 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
4845, 47orbi12d 918 . . . . . . . 8 (𝑐 = 𝑏 → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
4948ralbidv 3155 . . . . . . 7 (𝑐 = 𝑏 → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
50 zno 28306 . . . . . . . . . . 11 (𝑎 ∈ ℤs𝑎 No )
51 divs1 28143 . . . . . . . . . . 11 (𝑎 No → (𝑎 /su 1s ) = 𝑎)
5250, 51syl 17 . . . . . . . . . 10 (𝑎 ∈ ℤs → (𝑎 /su 1s ) = 𝑎)
53 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤs𝑎 ∈ ℤs)
5452, 53eqeltrd 2831 . . . . . . . . 9 (𝑎 ∈ ℤs → (𝑎 /su 1s ) ∈ ℤs)
5554orcd 873 . . . . . . . 8 (𝑎 ∈ ℤs → ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
5655rgen 3049 . . . . . . 7 𝑎 ∈ ℤs ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))
57 zseo 28345 . . . . . . . . . 10 (𝑏 ∈ ℤs → (∃𝑐 ∈ ℤs 𝑏 = (2s ·s 𝑐) ∨ ∃𝑐 ∈ ℤs 𝑏 = ((2s ·s 𝑐) +s 1s )))
58 oveq1 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → (𝑎 /su (2ss𝑤)) = (𝑐 /su (2ss𝑤)))
5958eleq1d 2816 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → ((𝑎 /su (2ss𝑤)) ∈ ℤs ↔ (𝑐 /su (2ss𝑤)) ∈ ℤs))
6058eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → ((𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
61602rexbidv 3197 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
6259, 61orbi12d 918 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → (((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
6362rspcv 3568 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℤs → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
6463adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
6533eqeq2d 2742 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑝 → ((𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦))))
6636eqeq2d 2742 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑞 → ((𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
6765, 66cbvrex2vw 3215 . . . . . . . . . . . . . . . . . 18 (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
6867orbi2i 912 . . . . . . . . . . . . . . . . 17 (((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
6964, 68imbitrdi 251 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
7069imp 406 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
7170an32s 652 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
72 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 𝑤 ∈ ℕ0s)
73 expsp1 28352 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2s No 𝑤 ∈ ℕ0s) → (2ss(𝑤 +s 1s )) = ((2ss𝑤) ·s 2s))
743, 72, 73sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss(𝑤 +s 1s )) = ((2ss𝑤) ·s 2s))
7574oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2ss(𝑤 +s 1s )) ·s 𝑐) = (((2ss𝑤) ·s 2s) ·s 𝑐))
76 expscl 28354 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2s No 𝑤 ∈ ℕ0s) → (2ss𝑤) ∈ No )
773, 72, 76sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss𝑤) ∈ No )
783a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 2s No )
79 zno 28306 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ ℤs𝑐 No )
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 𝑐 No )
8177, 78, 80mulsassd 28106 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss𝑤) ·s 2s) ·s 𝑐) = ((2ss𝑤) ·s (2s ·s 𝑐)))
8275, 81eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2ss(𝑤 +s 1s )) ·s 𝑐) = ((2ss𝑤) ·s (2s ·s 𝑐)))
8382oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss(𝑤 +s 1s )) ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2ss𝑤) ·s (2s ·s 𝑐)) /su (2ss(𝑤 +s 1s ))))
84 peano2n0s 28259 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ0s → (𝑤 +s 1s ) ∈ ℕ0s)
8584adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (𝑤 +s 1s ) ∈ ℕ0s)
8680, 85pw2divscan3d 28364 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss(𝑤 +s 1s )) ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = 𝑐)
8778, 80mulscld 28074 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2s ·s 𝑐) ∈ No )
88 expscl 28354 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No ∧ (𝑤 +s 1s ) ∈ ℕ0s) → (2ss(𝑤 +s 1s )) ∈ No )
893, 85, 88sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss(𝑤 +s 1s )) ∈ No )
90 2ne0s 28343 . . . . . . . . . . . . . . . . . . . . . 22 2s ≠ 0s
91 expsne0 28359 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No ∧ 2s ≠ 0s ∧ (𝑤 +s 1s ) ∈ ℕ0s) → (2ss(𝑤 +s 1s )) ≠ 0s )
923, 90, 85, 91mp3an12i 1467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss(𝑤 +s 1s )) ≠ 0s )
93 pw2recs 28361 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 +s 1s ) ∈ ℕ0s → ∃𝑥 No ((2ss(𝑤 +s 1s )) ·s 𝑥) = 1s )
9485, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ∃𝑥 No ((2ss(𝑤 +s 1s )) ·s 𝑥) = 1s )
9577, 87, 89, 92, 94divsasswd 28142 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss𝑤) ·s (2s ·s 𝑐)) /su (2ss(𝑤 +s 1s ))) = ((2ss𝑤) ·s ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s )))))
9683, 86, 953eqtr3rd 2775 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2ss𝑤) ·s ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s )))) = 𝑐)
9787, 85pw2divscld 28362 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ No )
9880, 97, 72pw2divsmuld 28363 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((𝑐 /su (2ss𝑤)) = ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ↔ ((2ss𝑤) ·s ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s )))) = 𝑐))
9996, 98mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (𝑐 /su (2ss𝑤)) = ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))))
10099eqcomd 2737 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (𝑐 /su (2ss𝑤)))
101100eleq1d 2816 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ (𝑐 /su (2ss𝑤)) ∈ ℤs))
102100eqeq1d 2733 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
1031022rexbidv 3197 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
104101, 103orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
105104adantlr 715 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → ((((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
10671, 105mpbird 257 . . . . . . . . . . . . 13 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
107 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑏 = (2s ·s 𝑐) → (𝑏 /su (2ss(𝑤 +s 1s ))) = ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))))
108107eleq1d 2816 . . . . . . . . . . . . . 14 (𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
109107eqeq1d 2733 . . . . . . . . . . . . . . 15 (𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
1101092rexbidv 3197 . . . . . . . . . . . . . 14 (𝑏 = (2s ·s 𝑐) → (∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
111108, 110orbi12d 918 . . . . . . . . . . . . 13 (𝑏 = (2s ·s 𝑐) → (((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
112106, 111syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → (𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
113112rexlimdva 3133 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → (∃𝑐 ∈ ℤs 𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
114 oveq2 7354 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑐 → (2s ·s 𝑝) = (2s ·s 𝑐))
115114oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑐 → ((2s ·s 𝑝) +s 1s ) = ((2s ·s 𝑐) +s 1s ))
116115oveq1d 7361 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑐 → (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) = (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞)))
117116eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑐 → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞))))
118 oveq2 7354 . . . . . . . . . . . . . . . . . 18 (𝑞 = (𝑤 +s 1s ) → (2ss𝑞) = (2ss(𝑤 +s 1s )))
119118oveq2d 7362 . . . . . . . . . . . . . . . . 17 (𝑞 = (𝑤 +s 1s ) → (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞)) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))))
120119eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑤 +s 1s ) → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞)) ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s )))))
121 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 𝑐 ∈ ℤs)
122 n0p1nns 28296 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℕ0s → (𝑤 +s 1s ) ∈ ℕs)
123122adantr 480 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (𝑤 +s 1s ) ∈ ℕs)
124 eqidd 2732 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))))
125117, 120, 121, 123, 1242rspcedvdw 3586 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
126125olcd 874 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
127126adantlr 715 . . . . . . . . . . . . 13 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
128 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑏 = ((2s ·s 𝑐) +s 1s ) → (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))))
129128eleq1d 2816 . . . . . . . . . . . . . 14 (𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
130128eqeq1d 2733 . . . . . . . . . . . . . . 15 (𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
1311302rexbidv 3197 . . . . . . . . . . . . . 14 (𝑏 = ((2s ·s 𝑐) +s 1s ) → (∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
132129, 131orbi12d 918 . . . . . . . . . . . . 13 (𝑏 = ((2s ·s 𝑐) +s 1s ) → (((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
133127, 132syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → (𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
134133rexlimdva 3133 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → (∃𝑐 ∈ ℤs 𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
135113, 134jaod 859 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → ((∃𝑐 ∈ ℤs 𝑏 = (2s ·s 𝑐) ∨ ∃𝑐 ∈ ℤs 𝑏 = ((2s ·s 𝑐) +s 1s )) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
13657, 135syl5 34 . . . . . . . . 9 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → (𝑏 ∈ ℤs → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
137136ralrimiv 3123 . . . . . . . 8 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
138137ex 412 . . . . . . 7 (𝑤 ∈ ℕ0s → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
13912, 19, 42, 49, 56, 138n0sind 28261 . . . . . 6 (𝑏 ∈ ℕ0s → ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
140 rsp 3220 . . . . . 6 (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → (𝑎 ∈ ℤs → ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
141139, 140syl 17 . . . . 5 (𝑏 ∈ ℕ0s → (𝑎 ∈ ℤs → ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
142141impcom 407 . . . 4 ((𝑎 ∈ ℤs𝑏 ∈ ℕ0s) → ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
143 eleq1 2819 . . . . 5 (𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 ∈ ℤs ↔ (𝑎 /su (2ss𝑏)) ∈ ℤs))
144 eqeq1 2735 . . . . . 6 (𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1451442rexbidv 3197 . . . . 5 (𝐴 = (𝑎 /su (2ss𝑏)) → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
146143, 145orbi12d 918 . . . 4 (𝐴 = (𝑎 /su (2ss𝑏)) → ((𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
147142, 146syl5ibrcom 247 . . 3 ((𝑎 ∈ ℤs𝑏 ∈ ℕ0s) → (𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
148147rexlimivv 3174 . 2 (∃𝑎 ∈ ℤs𝑏 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1491, 148sylbi 217 1 (𝐴 ∈ ℤs[1/2] → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  (class class class)co 7346   No csur 27578   0s c0s 27766   1s c1s 27767   +s cadds 27902   ·s cmuls 28045   /su cdivs 28126  0scnn0s 28242  scnns 28243  sczs 28302  2sc2s 28333  scexps 28335  s[1/2]czs12 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-divs 28127  df-seqs 28214  df-n0s 28244  df-nns 28245  df-zs 28303  df-2s 28334  df-exps 28336  df-zs12 28338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator