MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12zodd Structured version   Visualization version   GIF version

Theorem zs12zodd 28359
Description: A dyadic fraction is either an integer or an odd number divided by a positive power of two. (Contributed by Scott Fenton, 5-Dec-2025.)
Assertion
Ref Expression
zs12zodd (𝐴 ∈ ℤs[1/2] → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem zs12zodd
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28350 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑎 ∈ ℤs𝑏 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑏)))
2 oveq2 7357 . . . . . . . . . . . 12 (𝑐 = 0s → (2ss𝑐) = (2ss 0s ))
3 2sno 28311 . . . . . . . . . . . . 13 2s No
4 exps0 28319 . . . . . . . . . . . . 13 (2s No → (2ss 0s ) = 1s )
53, 4ax-mp 5 . . . . . . . . . . . 12 (2ss 0s ) = 1s
62, 5eqtrdi 2780 . . . . . . . . . . 11 (𝑐 = 0s → (2ss𝑐) = 1s )
76oveq2d 7365 . . . . . . . . . 10 (𝑐 = 0s → (𝑎 /su (2ss𝑐)) = (𝑎 /su 1s ))
87eleq1d 2813 . . . . . . . . 9 (𝑐 = 0s → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su 1s ) ∈ ℤs))
97eqeq1d 2731 . . . . . . . . . 10 (𝑐 = 0s → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1092rexbidv 3194 . . . . . . . . 9 (𝑐 = 0s → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
118, 10orbi12d 918 . . . . . . . 8 (𝑐 = 0s → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
1211ralbidv 3152 . . . . . . 7 (𝑐 = 0s → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
13 oveq2 7357 . . . . . . . . . . 11 (𝑐 = 𝑤 → (2ss𝑐) = (2ss𝑤))
1413oveq2d 7365 . . . . . . . . . 10 (𝑐 = 𝑤 → (𝑎 /su (2ss𝑐)) = (𝑎 /su (2ss𝑤)))
1514eleq1d 2813 . . . . . . . . 9 (𝑐 = 𝑤 → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su (2ss𝑤)) ∈ ℤs))
1614eqeq1d 2731 . . . . . . . . . 10 (𝑐 = 𝑤 → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
17162rexbidv 3194 . . . . . . . . 9 (𝑐 = 𝑤 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1815, 17orbi12d 918 . . . . . . . 8 (𝑐 = 𝑤 → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
1918ralbidv 3152 . . . . . . 7 (𝑐 = 𝑤 → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
20 oveq2 7357 . . . . . . . . . . . 12 (𝑐 = (𝑤 +s 1s ) → (2ss𝑐) = (2ss(𝑤 +s 1s )))
2120oveq2d 7365 . . . . . . . . . . 11 (𝑐 = (𝑤 +s 1s ) → (𝑎 /su (2ss𝑐)) = (𝑎 /su (2ss(𝑤 +s 1s ))))
2221eleq1d 2813 . . . . . . . . . 10 (𝑐 = (𝑤 +s 1s ) → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
2321eqeq1d 2731 . . . . . . . . . . 11 (𝑐 = (𝑤 +s 1s ) → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
24232rexbidv 3194 . . . . . . . . . 10 (𝑐 = (𝑤 +s 1s ) → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
2522, 24orbi12d 918 . . . . . . . . 9 (𝑐 = (𝑤 +s 1s ) → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
2625ralbidv 3152 . . . . . . . 8 (𝑐 = (𝑤 +s 1s ) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
27 oveq1 7356 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 /su (2ss(𝑤 +s 1s ))) = (𝑏 /su (2ss(𝑤 +s 1s ))))
2827eleq1d 2813 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
2927eqeq1d 2731 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
30292rexbidv 3194 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
31 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑥 = 𝑝 → (2s ·s 𝑥) = (2s ·s 𝑝))
3231oveq1d 7364 . . . . . . . . . . . . . 14 (𝑥 = 𝑝 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑝) +s 1s ))
3332oveq1d 7364 . . . . . . . . . . . . 13 (𝑥 = 𝑝 → (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)))
3433eqeq2d 2740 . . . . . . . . . . . 12 (𝑥 = 𝑝 → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦))))
35 oveq2 7357 . . . . . . . . . . . . . 14 (𝑦 = 𝑞 → (2ss𝑦) = (2ss𝑞))
3635oveq2d 7365 . . . . . . . . . . . . 13 (𝑦 = 𝑞 → (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
3736eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = 𝑞 → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)) ↔ (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
3834, 37cbvrex2vw 3212 . . . . . . . . . . 11 (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
3930, 38bitrdi 287 . . . . . . . . . 10 (𝑎 = 𝑏 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
4028, 39orbi12d 918 . . . . . . . . 9 (𝑎 = 𝑏 → (((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
4140cbvralvw 3207 . . . . . . . 8 (∀𝑎 ∈ ℤs ((𝑎 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
4226, 41bitrdi 287 . . . . . . 7 (𝑐 = (𝑤 +s 1s ) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
43 oveq2 7357 . . . . . . . . . . 11 (𝑐 = 𝑏 → (2ss𝑐) = (2ss𝑏))
4443oveq2d 7365 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑎 /su (2ss𝑐)) = (𝑎 /su (2ss𝑏)))
4544eleq1d 2813 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝑎 /su (2ss𝑐)) ∈ ℤs ↔ (𝑎 /su (2ss𝑏)) ∈ ℤs))
4644eqeq1d 2731 . . . . . . . . . 10 (𝑐 = 𝑏 → ((𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
47462rexbidv 3194 . . . . . . . . 9 (𝑐 = 𝑏 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
4845, 47orbi12d 918 . . . . . . . 8 (𝑐 = 𝑏 → (((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
4948ralbidv 3152 . . . . . . 7 (𝑐 = 𝑏 → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑐)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑐)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
50 zno 28275 . . . . . . . . . . 11 (𝑎 ∈ ℤs𝑎 No )
51 divs1 28112 . . . . . . . . . . 11 (𝑎 No → (𝑎 /su 1s ) = 𝑎)
5250, 51syl 17 . . . . . . . . . 10 (𝑎 ∈ ℤs → (𝑎 /su 1s ) = 𝑎)
53 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤs𝑎 ∈ ℤs)
5452, 53eqeltrd 2828 . . . . . . . . 9 (𝑎 ∈ ℤs → (𝑎 /su 1s ) ∈ ℤs)
5554orcd 873 . . . . . . . 8 (𝑎 ∈ ℤs → ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
5655rgen 3046 . . . . . . 7 𝑎 ∈ ℤs ((𝑎 /su 1s ) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su 1s ) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))
57 zseo 28314 . . . . . . . . . 10 (𝑏 ∈ ℤs → (∃𝑐 ∈ ℤs 𝑏 = (2s ·s 𝑐) ∨ ∃𝑐 ∈ ℤs 𝑏 = ((2s ·s 𝑐) +s 1s )))
58 oveq1 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → (𝑎 /su (2ss𝑤)) = (𝑐 /su (2ss𝑤)))
5958eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → ((𝑎 /su (2ss𝑤)) ∈ ℤs ↔ (𝑐 /su (2ss𝑤)) ∈ ℤs))
6058eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → ((𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
61602rexbidv 3194 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
6259, 61orbi12d 918 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → (((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
6362rspcv 3573 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℤs → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
6463adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
6533eqeq2d 2740 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑝 → ((𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦))))
6636eqeq2d 2740 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑞 → ((𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑦)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
6765, 66cbvrex2vw 3212 . . . . . . . . . . . . . . . . . 18 (∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
6867orbi2i 912 . . . . . . . . . . . . . . . . 17 (((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
6964, 68imbitrdi 251 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
7069imp 406 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
7170an32s 652 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
72 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 𝑤 ∈ ℕ0s)
73 expsp1 28321 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2s No 𝑤 ∈ ℕ0s) → (2ss(𝑤 +s 1s )) = ((2ss𝑤) ·s 2s))
743, 72, 73sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss(𝑤 +s 1s )) = ((2ss𝑤) ·s 2s))
7574oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2ss(𝑤 +s 1s )) ·s 𝑐) = (((2ss𝑤) ·s 2s) ·s 𝑐))
76 expscl 28323 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2s No 𝑤 ∈ ℕ0s) → (2ss𝑤) ∈ No )
773, 72, 76sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss𝑤) ∈ No )
783a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 2s No )
79 zno 28275 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ ℤs𝑐 No )
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 𝑐 No )
8177, 78, 80mulsassd 28075 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss𝑤) ·s 2s) ·s 𝑐) = ((2ss𝑤) ·s (2s ·s 𝑐)))
8275, 81eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2ss(𝑤 +s 1s )) ·s 𝑐) = ((2ss𝑤) ·s (2s ·s 𝑐)))
8382oveq1d 7364 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss(𝑤 +s 1s )) ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2ss𝑤) ·s (2s ·s 𝑐)) /su (2ss(𝑤 +s 1s ))))
84 peano2n0s 28228 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ0s → (𝑤 +s 1s ) ∈ ℕ0s)
8584adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (𝑤 +s 1s ) ∈ ℕ0s)
8680, 85pw2divscan3d 28333 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss(𝑤 +s 1s )) ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = 𝑐)
8778, 80mulscld 28043 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2s ·s 𝑐) ∈ No )
88 expscl 28323 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No ∧ (𝑤 +s 1s ) ∈ ℕ0s) → (2ss(𝑤 +s 1s )) ∈ No )
893, 85, 88sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss(𝑤 +s 1s )) ∈ No )
90 2ne0s 28312 . . . . . . . . . . . . . . . . . . . . . 22 2s ≠ 0s
91 expsne0 28328 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No ∧ 2s ≠ 0s ∧ (𝑤 +s 1s ) ∈ ℕ0s) → (2ss(𝑤 +s 1s )) ≠ 0s )
923, 90, 85, 91mp3an12i 1467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (2ss(𝑤 +s 1s )) ≠ 0s )
93 pw2recs 28330 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 +s 1s ) ∈ ℕ0s → ∃𝑥 No ((2ss(𝑤 +s 1s )) ·s 𝑥) = 1s )
9485, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ∃𝑥 No ((2ss(𝑤 +s 1s )) ·s 𝑥) = 1s )
9577, 87, 89, 92, 94divsasswd 28111 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2ss𝑤) ·s (2s ·s 𝑐)) /su (2ss(𝑤 +s 1s ))) = ((2ss𝑤) ·s ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s )))))
9683, 86, 953eqtr3rd 2773 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2ss𝑤) ·s ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s )))) = 𝑐)
9787, 85pw2divscld 28331 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ No )
9880, 97, 72pw2divsmuld 28332 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((𝑐 /su (2ss𝑤)) = ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ↔ ((2ss𝑤) ·s ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s )))) = 𝑐))
9996, 98mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (𝑐 /su (2ss𝑤)) = ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))))
10099eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (𝑐 /su (2ss𝑤)))
101100eleq1d 2813 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ (𝑐 /su (2ss𝑤)) ∈ ℤs))
102100eqeq1d 2731 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
1031022rexbidv 3194 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
104101, 103orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
105104adantlr 715 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → ((((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ ((𝑐 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑐 /su (2ss𝑤)) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
10671, 105mpbird 257 . . . . . . . . . . . . 13 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
107 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑏 = (2s ·s 𝑐) → (𝑏 /su (2ss(𝑤 +s 1s ))) = ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))))
108107eleq1d 2813 . . . . . . . . . . . . . 14 (𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
109107eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
1101092rexbidv 3194 . . . . . . . . . . . . . 14 (𝑏 = (2s ·s 𝑐) → (∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
111108, 110orbi12d 918 . . . . . . . . . . . . 13 (𝑏 = (2s ·s 𝑐) → (((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ (((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs ((2s ·s 𝑐) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
112106, 111syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → (𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
113112rexlimdva 3130 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → (∃𝑐 ∈ ℤs 𝑏 = (2s ·s 𝑐) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
114 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑐 → (2s ·s 𝑝) = (2s ·s 𝑐))
115114oveq1d 7364 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑐 → ((2s ·s 𝑝) +s 1s ) = ((2s ·s 𝑐) +s 1s ))
116115oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑐 → (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) = (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞)))
117116eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑐 → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞))))
118 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑞 = (𝑤 +s 1s ) → (2ss𝑞) = (2ss(𝑤 +s 1s )))
119118oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑞 = (𝑤 +s 1s ) → (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞)) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))))
120119eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑤 +s 1s ) → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss𝑞)) ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s )))))
121 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → 𝑐 ∈ ℤs)
122 n0p1nns 28265 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℕ0s → (𝑤 +s 1s ) ∈ ℕs)
123122adantr 480 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (𝑤 +s 1s ) ∈ ℕs)
124 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))))
125117, 120, 121, 123, 1242rspcedvdw 3591 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))
126125olcd 874 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑐 ∈ ℤs) → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
127126adantlr 715 . . . . . . . . . . . . 13 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
128 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑏 = ((2s ·s 𝑐) +s 1s ) → (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))))
129128eleq1d 2813 . . . . . . . . . . . . . 14 (𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs))
130128eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
1311302rexbidv 3194 . . . . . . . . . . . . . 14 (𝑏 = ((2s ·s 𝑐) +s 1s ) → (∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)) ↔ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
132129, 131orbi12d 918 . . . . . . . . . . . . 13 (𝑏 = ((2s ·s 𝑐) +s 1s ) → (((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))) ↔ ((((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (((2s ·s 𝑐) +s 1s ) /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
133127, 132syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) ∧ 𝑐 ∈ ℤs) → (𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
134133rexlimdva 3130 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → (∃𝑐 ∈ ℤs 𝑏 = ((2s ·s 𝑐) +s 1s ) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
135113, 134jaod 859 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → ((∃𝑐 ∈ ℤs 𝑏 = (2s ·s 𝑐) ∨ ∃𝑐 ∈ ℤs 𝑏 = ((2s ·s 𝑐) +s 1s )) → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
13657, 135syl5 34 . . . . . . . . 9 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → (𝑏 ∈ ℤs → ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
137136ralrimiv 3120 . . . . . . . 8 ((𝑤 ∈ ℕ0s ∧ ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))) → ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞))))
138137ex 412 . . . . . . 7 (𝑤 ∈ ℕ0s → (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑤)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑤)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → ∀𝑏 ∈ ℤs ((𝑏 /su (2ss(𝑤 +s 1s ))) ∈ ℤs ∨ ∃𝑝 ∈ ℤs𝑞 ∈ ℕs (𝑏 /su (2ss(𝑤 +s 1s ))) = (((2s ·s 𝑝) +s 1s ) /su (2ss𝑞)))))
13912, 19, 42, 49, 56, 138n0sind 28230 . . . . . 6 (𝑏 ∈ ℕ0s → ∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
140 rsp 3217 . . . . . 6 (∀𝑎 ∈ ℤs ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) → (𝑎 ∈ ℤs → ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
141139, 140syl 17 . . . . 5 (𝑏 ∈ ℕ0s → (𝑎 ∈ ℤs → ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
142141impcom 407 . . . 4 ((𝑎 ∈ ℤs𝑏 ∈ ℕ0s) → ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
143 eleq1 2816 . . . . 5 (𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 ∈ ℤs ↔ (𝑎 /su (2ss𝑏)) ∈ ℤs))
144 eqeq1 2733 . . . . . 6 (𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1451442rexbidv 3194 . . . . 5 (𝐴 = (𝑎 /su (2ss𝑏)) → (∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
146143, 145orbi12d 918 . . . 4 (𝐴 = (𝑎 /su (2ss𝑏)) → ((𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))) ↔ ((𝑎 /su (2ss𝑏)) ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs (𝑎 /su (2ss𝑏)) = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
147142, 146syl5ibrcom 247 . . 3 ((𝑎 ∈ ℤs𝑏 ∈ ℕ0s) → (𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦)))))
148147rexlimivv 3171 . 2 (∃𝑎 ∈ ℤs𝑏 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑏)) → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
1491, 148sylbi 217 1 (𝐴 ∈ ℤs[1/2] → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  (class class class)co 7349   No csur 27549   0s c0s 27736   1s c1s 27737   +s cadds 27871   ·s cmuls 28014   /su cdivs 28095  0scnn0s 28211  scnns 28212  sczs 28271  2sc2s 28302  scexps 28304  s[1/2]czs12 28306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-muls 28015  df-divs 28096  df-seqs 28183  df-n0s 28213  df-nns 28214  df-zs 28272  df-2s 28303  df-exps 28305  df-zs12 28307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator