MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12half Structured version   Visualization version   GIF version

Theorem zs12half 28392
Description: Half of a dyadic is a dyadic. (Contributed by Scott Fenton, 11-Dec-2025.)
Assertion
Ref Expression
zs12half (𝐴 ∈ ℤs[1/2] → (𝐴 /su 2s) ∈ ℤs[1/2])

Proof of Theorem zs12half
Dummy variables 𝑎 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28385 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)))
2 2sno 28346 . . . . . . . 8 2s No
3 exps1 28355 . . . . . . . 8 (2s No → (2ss 1s ) = 2s)
42, 3ax-mp 5 . . . . . . 7 (2ss 1s ) = 2s
54oveq2i 7380 . . . . . 6 ((𝑎 /su (2ss𝑛)) /su (2ss 1s )) = ((𝑎 /su (2ss𝑛)) /su 2s)
6 zno 28310 . . . . . . . . . 10 (𝑎 ∈ ℤs𝑎 No )
76adantr 480 . . . . . . . . 9 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → 𝑎 No )
8 simpr 484 . . . . . . . . 9 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → 𝑛 ∈ ℕ0s)
9 1n0s 28280 . . . . . . . . . 10 1s ∈ ℕ0s
109a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → 1s ∈ ℕ0s)
117, 8, 10pw2divscan4d 28371 . . . . . . . 8 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝑎 /su (2ss𝑛)) = (((2ss 1s ) ·s 𝑎) /su (2ss(𝑛 +s 1s ))))
124, 2eqeltri 2824 . . . . . . . . . 10 (2ss 1s ) ∈ No
1312a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (2ss 1s ) ∈ No )
14 peano2n0s 28263 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) ∈ ℕ0s)
1514adantl 481 . . . . . . . . 9 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝑛 +s 1s ) ∈ ℕ0s)
1613, 7, 15pw2divsassd 28370 . . . . . . . 8 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (((2ss 1s ) ·s 𝑎) /su (2ss(𝑛 +s 1s ))) = ((2ss 1s ) ·s (𝑎 /su (2ss(𝑛 +s 1s )))))
1711, 16eqtr2d 2765 . . . . . . 7 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → ((2ss 1s ) ·s (𝑎 /su (2ss(𝑛 +s 1s )))) = (𝑎 /su (2ss𝑛)))
187, 8pw2divscld 28366 . . . . . . . 8 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝑎 /su (2ss𝑛)) ∈ No )
197, 15pw2divscld 28366 . . . . . . . 8 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝑎 /su (2ss(𝑛 +s 1s ))) ∈ No )
2018, 19, 10pw2divsmuld 28367 . . . . . . 7 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (((𝑎 /su (2ss𝑛)) /su (2ss 1s )) = (𝑎 /su (2ss(𝑛 +s 1s ))) ↔ ((2ss 1s ) ·s (𝑎 /su (2ss(𝑛 +s 1s )))) = (𝑎 /su (2ss𝑛))))
2117, 20mpbird 257 . . . . . 6 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → ((𝑎 /su (2ss𝑛)) /su (2ss 1s )) = (𝑎 /su (2ss(𝑛 +s 1s ))))
225, 21eqtr3id 2778 . . . . 5 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → ((𝑎 /su (2ss𝑛)) /su 2s) = (𝑎 /su (2ss(𝑛 +s 1s ))))
23 oveq1 7376 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 /su (2ss𝑚)) = (𝑎 /su (2ss𝑚)))
2423eqeq2d 2740 . . . . . . 7 (𝑏 = 𝑎 → ((𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑏 /su (2ss𝑚)) ↔ (𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑎 /su (2ss𝑚))))
25 oveq2 7377 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
2625oveq2d 7385 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → (𝑎 /su (2ss𝑚)) = (𝑎 /su (2ss(𝑛 +s 1s ))))
2726eqeq2d 2740 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → ((𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑎 /su (2ss𝑚)) ↔ (𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑎 /su (2ss(𝑛 +s 1s )))))
28 simpl 482 . . . . . . 7 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → 𝑎 ∈ ℤs)
29 eqidd 2730 . . . . . . 7 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑎 /su (2ss(𝑛 +s 1s ))))
3024, 27, 28, 15, 292rspcedvdw 3599 . . . . . 6 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s (𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑏 /su (2ss𝑚)))
31 elzs12 28385 . . . . . 6 ((𝑎 /su (2ss(𝑛 +s 1s ))) ∈ ℤs[1/2] ↔ ∃𝑏 ∈ ℤs𝑚 ∈ ℕ0s (𝑎 /su (2ss(𝑛 +s 1s ))) = (𝑏 /su (2ss𝑚)))
3230, 31sylibr 234 . . . . 5 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝑎 /su (2ss(𝑛 +s 1s ))) ∈ ℤs[1/2])
3322, 32eqeltrd 2828 . . . 4 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → ((𝑎 /su (2ss𝑛)) /su 2s) ∈ ℤs[1/2])
34 oveq1 7376 . . . . 5 (𝐴 = (𝑎 /su (2ss𝑛)) → (𝐴 /su 2s) = ((𝑎 /su (2ss𝑛)) /su 2s))
3534eleq1d 2813 . . . 4 (𝐴 = (𝑎 /su (2ss𝑛)) → ((𝐴 /su 2s) ∈ ℤs[1/2] ↔ ((𝑎 /su (2ss𝑛)) /su 2s) ∈ ℤs[1/2]))
3633, 35syl5ibrcom 247 . . 3 ((𝑎 ∈ ℤs𝑛 ∈ ℕ0s) → (𝐴 = (𝑎 /su (2ss𝑛)) → (𝐴 /su 2s) ∈ ℤs[1/2]))
3736rexlimivv 3177 . 2 (∃𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su (2ss𝑛)) → (𝐴 /su 2s) ∈ ℤs[1/2])
381, 37sylbi 217 1 (𝐴 ∈ ℤs[1/2] → (𝐴 /su 2s) ∈ ℤs[1/2])
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7369   No csur 27584   1s c1s 27772   +s cadds 27906   ·s cmuls 28049   /su cdivs 28130  0scnn0s 28246  sczs 28306  2sc2s 28337  scexps 28339  s[1/2]czs12 28341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967  df-subs 27968  df-muls 28050  df-divs 28131  df-seqs 28218  df-n0s 28248  df-nns 28249  df-zs 28307  df-2s 28338  df-exps 28340  df-zs12 28342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator