| Step | Hyp | Ref
| Expression |
| 1 | | elzs12 28385 |
. 2
⊢ (𝐴 ∈ ℤs[1/2]
↔ ∃𝑎 ∈
ℤs ∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su
(2s↑s𝑛))) |
| 2 | | 2sno 28346 |
. . . . . . . 8
⊢
2s ∈ No |
| 3 | | exps1 28355 |
. . . . . . . 8
⊢
(2s ∈ No →
(2s↑s 1s ) =
2s) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢
(2s↑s 1s ) =
2s |
| 5 | 4 | oveq2i 7380 |
. . . . . 6
⊢ ((𝑎 /su
(2s↑s𝑛)) /su
(2s↑s 1s )) = ((𝑎 /su
(2s↑s𝑛)) /su
2s) |
| 6 | | zno 28310 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℤs
→ 𝑎 ∈ No ) |
| 7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → 𝑎 ∈ No
) |
| 8 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → 𝑛 ∈
ℕ0s) |
| 9 | | 1n0s 28280 |
. . . . . . . . . 10
⊢
1s ∈ ℕ0s |
| 10 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → 1s ∈
ℕ0s) |
| 11 | 7, 8, 10 | pw2divscan4d 28371 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝑎 /su
(2s↑s𝑛)) = (((2s↑s
1s ) ·s 𝑎) /su
(2s↑s(𝑛 +s 1s
)))) |
| 12 | 4, 2 | eqeltri 2824 |
. . . . . . . . . 10
⊢
(2s↑s 1s ) ∈ No |
| 13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (2s↑s 1s )
∈ No ) |
| 14 | | peano2n0s 28263 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ (𝑛 +s
1s ) ∈ ℕ0s) |
| 15 | 14 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝑛 +s 1s ) ∈
ℕ0s) |
| 16 | 13, 7, 15 | pw2divsassd 28370 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (((2s↑s 1s )
·s 𝑎)
/su (2s↑s(𝑛 +s 1s ))) =
((2s↑s 1s ) ·s (𝑎 /su
(2s↑s(𝑛 +s 1s
))))) |
| 17 | 11, 16 | eqtr2d 2765 |
. . . . . . 7
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → ((2s↑s 1s )
·s (𝑎
/su (2s↑s(𝑛 +s 1s )))) = (𝑎 /su
(2s↑s𝑛))) |
| 18 | 7, 8 | pw2divscld 28366 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝑎 /su
(2s↑s𝑛)) ∈ No
) |
| 19 | 7, 15 | pw2divscld 28366 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝑎 /su
(2s↑s(𝑛 +s 1s ))) ∈ No ) |
| 20 | 18, 19, 10 | pw2divsmuld 28367 |
. . . . . . 7
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (((𝑎 /su
(2s↑s𝑛)) /su
(2s↑s 1s )) = (𝑎 /su
(2s↑s(𝑛 +s 1s ))) ↔
((2s↑s 1s ) ·s (𝑎 /su
(2s↑s(𝑛 +s 1s )))) = (𝑎 /su
(2s↑s𝑛)))) |
| 21 | 17, 20 | mpbird 257 |
. . . . . 6
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → ((𝑎 /su
(2s↑s𝑛)) /su
(2s↑s 1s )) = (𝑎 /su
(2s↑s(𝑛 +s 1s
)))) |
| 22 | 5, 21 | eqtr3id 2778 |
. . . . 5
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → ((𝑎 /su
(2s↑s𝑛)) /su 2s) = (𝑎 /su
(2s↑s(𝑛 +s 1s
)))) |
| 23 | | oveq1 7376 |
. . . . . . . 8
⊢ (𝑏 = 𝑎 → (𝑏 /su
(2s↑s𝑚)) = (𝑎 /su
(2s↑s𝑚))) |
| 24 | 23 | eqeq2d 2740 |
. . . . . . 7
⊢ (𝑏 = 𝑎 → ((𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑏 /su
(2s↑s𝑚)) ↔ (𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑎 /su
(2s↑s𝑚)))) |
| 25 | | oveq2 7377 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 +s 1s ) →
(2s↑s𝑚) = (2s↑s(𝑛 +s 1s
))) |
| 26 | 25 | oveq2d 7385 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 +s 1s ) → (𝑎 /su
(2s↑s𝑚)) = (𝑎 /su
(2s↑s(𝑛 +s 1s
)))) |
| 27 | 26 | eqeq2d 2740 |
. . . . . . 7
⊢ (𝑚 = (𝑛 +s 1s ) → ((𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑎 /su
(2s↑s𝑚)) ↔ (𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑎 /su
(2s↑s(𝑛 +s 1s
))))) |
| 28 | | simpl 482 |
. . . . . . 7
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → 𝑎 ∈ ℤs) |
| 29 | | eqidd 2730 |
. . . . . . 7
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑎 /su
(2s↑s(𝑛 +s 1s
)))) |
| 30 | 24, 27, 28, 15, 29 | 2rspcedvdw 3599 |
. . . . . 6
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → ∃𝑏 ∈ ℤs ∃𝑚 ∈ ℕ0s
(𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑏 /su
(2s↑s𝑚))) |
| 31 | | elzs12 28385 |
. . . . . 6
⊢ ((𝑎 /su
(2s↑s(𝑛 +s 1s ))) ∈
ℤs[1/2] ↔ ∃𝑏 ∈ ℤs ∃𝑚 ∈ ℕ0s
(𝑎 /su
(2s↑s(𝑛 +s 1s ))) = (𝑏 /su
(2s↑s𝑚))) |
| 32 | 30, 31 | sylibr 234 |
. . . . 5
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝑎 /su
(2s↑s(𝑛 +s 1s ))) ∈
ℤs[1/2]) |
| 33 | 22, 32 | eqeltrd 2828 |
. . . 4
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → ((𝑎 /su
(2s↑s𝑛)) /su 2s) ∈
ℤs[1/2]) |
| 34 | | oveq1 7376 |
. . . . 5
⊢ (𝐴 = (𝑎 /su
(2s↑s𝑛)) → (𝐴 /su 2s) = ((𝑎 /su
(2s↑s𝑛)) /su
2s)) |
| 35 | 34 | eleq1d 2813 |
. . . 4
⊢ (𝐴 = (𝑎 /su
(2s↑s𝑛)) → ((𝐴 /su 2s) ∈
ℤs[1/2] ↔ ((𝑎 /su
(2s↑s𝑛)) /su 2s) ∈
ℤs[1/2])) |
| 36 | 33, 35 | syl5ibrcom 247 |
. . 3
⊢ ((𝑎 ∈ ℤs
∧ 𝑛 ∈
ℕ0s) → (𝐴 = (𝑎 /su
(2s↑s𝑛)) → (𝐴 /su 2s) ∈
ℤs[1/2])) |
| 37 | 36 | rexlimivv 3177 |
. 2
⊢
(∃𝑎 ∈
ℤs ∃𝑛 ∈ ℕ0s 𝐴 = (𝑎 /su
(2s↑s𝑛)) → (𝐴 /su 2s) ∈
ℤs[1/2]) |
| 38 | 1, 37 | sylbi 217 |
1
⊢ (𝐴 ∈ ℤs[1/2]
→ (𝐴
/su 2s) ∈
ℤs[1/2]) |