MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12bday Structured version   Visualization version   GIF version

Theorem zs12bday 28439
Description: A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
zs12bday (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)

Proof of Theorem zs12bday
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28436 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
2 fvoveq1 7454 . . . . . 6 (𝑧 = 𝑥 → ( bday ‘(𝑧 /su (2ss𝑦))) = ( bday ‘(𝑥 /su (2ss𝑦))))
32eleq1d 2824 . . . . 5 (𝑧 = 𝑥 → (( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
4 oveq2 7439 . . . . . . . . . . . 12 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
5 2sno 28418 . . . . . . . . . . . . 13 2s No
6 exps0 28425 . . . . . . . . . . . . 13 (2s No → (2ss 0s ) = 1s )
75, 6ax-mp 5 . . . . . . . . . . . 12 (2ss 0s ) = 1s
84, 7eqtrdi 2791 . . . . . . . . . . 11 (𝑚 = 0s → (2ss𝑚) = 1s )
98oveq2d 7447 . . . . . . . . . 10 (𝑚 = 0s → (𝑧 /su (2ss𝑚)) = (𝑧 /su 1s ))
109fveq2d 6911 . . . . . . . . 9 (𝑚 = 0s → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su 1s )))
1110eleq1d 2824 . . . . . . . 8 (𝑚 = 0s → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su 1s )) ∈ ω))
1211ralbidv 3176 . . . . . . 7 (𝑚 = 0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω))
13 oveq2 7439 . . . . . . . . . . 11 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1413oveq2d 7447 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑛)))
1514fveq2d 6911 . . . . . . . . 9 (𝑚 = 𝑛 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑛))))
1615eleq1d 2824 . . . . . . . 8 (𝑚 = 𝑛 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
1716ralbidv 3176 . . . . . . 7 (𝑚 = 𝑛 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
18 oveq2 7439 . . . . . . . . . . . 12 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1918oveq2d 7447 . . . . . . . . . . 11 (𝑚 = (𝑛 +s 1s ) → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss(𝑛 +s 1s ))))
2019fveq2d 6911 . . . . . . . . . 10 (𝑚 = (𝑛 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))))
2120eleq1d 2824 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2221ralbidv 3176 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
23 fvoveq1 7454 . . . . . . . . . 10 (𝑧 = 𝑤 → ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))))
2423eleq1d 2824 . . . . . . . . 9 (𝑧 = 𝑤 → (( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2524cbvralvw 3235 . . . . . . . 8 (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
2622, 25bitrdi 287 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
27 oveq2 7439 . . . . . . . . . . 11 (𝑚 = 𝑦 → (2ss𝑚) = (2ss𝑦))
2827oveq2d 7447 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑦)))
2928fveq2d 6911 . . . . . . . . 9 (𝑚 = 𝑦 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑦))))
3029eleq1d 2824 . . . . . . . 8 (𝑚 = 𝑦 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
3130ralbidv 3176 . . . . . . 7 (𝑚 = 𝑦 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
32 zno 28383 . . . . . . . . . . 11 (𝑧 ∈ ℤs𝑧 No )
33 divs1 28244 . . . . . . . . . . 11 (𝑧 No → (𝑧 /su 1s ) = 𝑧)
3432, 33syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤs → (𝑧 /su 1s ) = 𝑧)
3534fveq2d 6911 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) = ( bday 𝑧))
36 zsbday 28407 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday 𝑧) ∈ ω)
3735, 36eqeltrd 2839 . . . . . . . 8 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) ∈ ω)
3837rgen 3061 . . . . . . 7 𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω
39 zseo 28421 . . . . . . . . . 10 (𝑤 ∈ ℤs → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )))
40 expsp1 28427 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
415, 40mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4342oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
445a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s No )
45 zno 28383 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℤs𝑡 No )
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 𝑡 No )
4744, 46mulscld 28176 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
48 expscl 28428 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
495, 48mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
5049adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
51 2ne0s 28419 . . . . . . . . . . . . . . . . . . . . 21 2s ≠ 0s
52 expsne0 28429 . . . . . . . . . . . . . . . . . . . . 21 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
535, 51, 52mp3an12 1450 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
5551a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s ≠ 0s )
5647, 50, 44, 54, 55divdivs1d 28272 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
5744, 46, 50, 54divsassd 28270 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss𝑛)) = (2s ·s (𝑡 /su (2ss𝑛))))
5857oveq1d 7446 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
5943, 56, 583eqtr2d 2781 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
6046, 50, 54divscld 28263 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
6160, 44, 55divscan3d 28275 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s) = (𝑡 /su (2ss𝑛)))
6259, 61eqtrd 2775 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = (𝑡 /su (2ss𝑛)))
6362fveq2d 6911 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6463adantlr 715 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
65 fvoveq1 7454 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6665eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω))
6766rspccva 3621 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6867adantll 714 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6964, 68eqeltrd 2839 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω)
70 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))))
7170eleq1d 2824 . . . . . . . . . . . . 13 (𝑤 = (2s ·s 𝑡) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω))
7269, 71syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7372rexlimdva 3153 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7445adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 No )
75 no2times 28416 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 No → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7776oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ((𝑡 +s 𝑡) +s 1s ))
78 1sno 27887 . . . . . . . . . . . . . . . . . . . . 21 1s No
7978a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s No )
8074, 74, 79addsassd 28054 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8177, 80eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8281oveq1d 7446 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
8374, 79addscld 28028 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ No )
84 simpll 767 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑛 ∈ ℕ0s)
8574sltp1d 28063 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 <s (𝑡 +s 1s ))
86 2nns 28417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2s ∈ ℕs
87 nnzs 28387 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2s ∈ ℕs → 2s ∈ ℤs)
8886, 87mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s ∈ ℤs)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 ∈ ℤs)
9088, 89zmulscld 28398 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ ℤs)
9190znod 28384 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
92 pncans 28117 . . . . . . . . . . . . . . . . . . . . . . 23 (((2s ·s 𝑡) ∈ No ∧ 1s No ) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9391, 78, 92sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9493eqcomd 2741 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (((2s ·s 𝑡) +s 1s ) -s 1s ))
9594sneqd 4643 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s 𝑡)} = {(((2s ·s 𝑡) +s 1s ) -s 1s )})
96 mulsrid 28154 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2s No → (2s ·s 1s ) = 2s)
975, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (2s ·s 1s ) = 2s
98 1p1e2s 28415 . . . . . . . . . . . . . . . . . . . . . . . 24 ( 1s +s 1s ) = 2s
9997, 98eqtr4i 2766 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ·s 1s ) = ( 1s +s 1s )
10099oveq2i 7442 . . . . . . . . . . . . . . . . . . . . . 22 ((2s ·s 𝑡) +s (2s ·s 1s )) = ((2s ·s 𝑡) +s ( 1s +s 1s ))
1015a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s No )
102101, 74, 79addsdid 28197 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = ((2s ·s 𝑡) +s (2s ·s 1s )))
10391, 79, 79addsassd 28054 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) +s 1s ) = ((2s ·s 𝑡) +s ( 1s +s 1s )))
104100, 102, 1033eqtr4a 2801 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = (((2s ·s 𝑡) +s 1s ) +s 1s ))
105104sneqd 4643 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s (𝑡 +s 1s ))} = {(((2s ·s 𝑡) +s 1s ) +s 1s )})
10695, 105oveq12d 7449 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
107 1zs 28392 . . . . . . . . . . . . . . . . . . . . . 22 1s ∈ ℤs
108107a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s ∈ ℤs)
10990, 108zaddscld 28396 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) ∈ ℤs)
110 zscut 28408 . . . . . . . . . . . . . . . . . . . 20 (((2s ·s 𝑡) +s 1s ) ∈ ℤs → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
112106, 111, 813eqtr2d 2781 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = (𝑡 +s (𝑡 +s 1s )))
11374, 83, 84, 85, 112pw2cut 28435 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
11482, 113eqtr4d 2778 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}))
115114fveq2d 6911 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) = ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})))
11649ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
11753ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
11874, 116, 117divscld 28263 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
11983, 116, 117divscld 28263 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No )
12074, 116, 117divscan2d 28264 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) = 𝑡)
121120, 85eqbrtrd 5170 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ))
122 nnsgt0 28357 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ∈ ℕs → 0s <s 2s)
12386, 122ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 0s <s 2s
124 expsgt0 28430 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No 𝑛 ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss𝑛))
1255, 123, 124mp3an13 1451 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0s → 0s <s (2ss𝑛))
126125ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 0s <s (2ss𝑛))
127118, 83, 116, 126sltmuldiv2d 28269 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ) ↔ (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛))))
128121, 127mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛)))
129118, 119, 128ssltsn 27852 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))})
130 imaundi 6172 . . . . . . . . . . . . . . . . . . . . . 22 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
131130unieqi 4924 . . . . . . . . . . . . . . . . . . . . 21 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
132 uniun 4935 . . . . . . . . . . . . . . . . . . . . 21 (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
133131, 132eqtri 2763 . . . . . . . . . . . . . . . . . . . 20 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
134 bdayfn 27833 . . . . . . . . . . . . . . . . . . . . . . . . 25 bday Fn No
135 fnsnfv 6988 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ (𝑡 /su (2ss𝑛)) ∈ No ) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
136134, 118, 135sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
137136unieqd 4925 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
138 fvex 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘(𝑡 /su (2ss𝑛))) ∈ V
139138unisn 4931 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday ‘(𝑡 /su (2ss𝑛)))
140137, 139eqtr3di 2790 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) = ( bday ‘(𝑡 /su (2ss𝑛))))
141140, 68eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω)
142 fnsnfv 6988 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No ) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
143134, 119, 142sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
144143unieqd 4925 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
145 fvex 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ V
146145unisn 4931 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))
147144, 146eqtr3di 2790 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
148 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑡 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
149148eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑡 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω))
150 simplr 769 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω)
15189, 108zaddscld 28396 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ ℤs)
152149, 150, 151rspcdva 3623 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω)
153147, 152eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω)
154 omun 7910 . . . . . . . . . . . . . . . . . . . . 21 (( ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω ∧ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
155141, 153, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
156133, 155eqeltrid 2843 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
157 peano2 7913 . . . . . . . . . . . . . . . . . . 19 ( ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
158156, 157syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
159 nnon 7893 . . . . . . . . . . . . . . . . . 18 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
160158, 159syl 17 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
161 imassrn 6091 . . . . . . . . . . . . . . . . . . 19 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ ran bday
162 bdayrn 27835 . . . . . . . . . . . . . . . . . . 19 ran bday = On
163161, 162sseqtri 4032 . . . . . . . . . . . . . . . . . 18 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On
164 onsucuni 7848 . . . . . . . . . . . . . . . . . 18 (( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
165163, 164mp1i 13 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
166 scutbdaybnd 27875 . . . . . . . . . . . . . . . . 17 (({(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))} ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
167129, 160, 165, 166syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
168 bdayelon 27836 . . . . . . . . . . . . . . . . 17 ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On
169 onsssuc 6476 . . . . . . . . . . . . . . . . 17 ((( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
170168, 160, 169sylancr 587 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
171167, 170mpbid 232 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
172115, 171eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
173 peano2 7913 . . . . . . . . . . . . . . 15 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
174158, 173syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
175 elnn 7898 . . . . . . . . . . . . . 14 ((( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∧ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
176172, 174, 175syl2anc 584 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
177 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))))
178177eleq1d 2824 . . . . . . . . . . . . 13 (𝑤 = ((2s ·s 𝑡) +s 1s ) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω))
179176, 178syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
180179rexlimdva 3153 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18173, 180jaod 859 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ((∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18239, 181syl5 34 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (𝑤 ∈ ℤs → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
183182ralrimiv 3143 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
184183ex 412 . . . . . . 7 (𝑛 ∈ ℕ0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18512, 17, 26, 31, 38, 184n0sind 28352 . . . . . 6 (𝑦 ∈ ℕ0s → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
186185adantl 481 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
187 simpl 482 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → 𝑥 ∈ ℤs)
1883, 186, 187rspcdva 3623 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω)
189 fveq2 6907 . . . . 5 (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) = ( bday ‘(𝑥 /su (2ss𝑦))))
190189eleq1d 2824 . . . 4 (𝐴 = (𝑥 /su (2ss𝑦)) → (( bday 𝐴) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
191188, 190syl5ibrcom 247 . . 3 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω))
192191rexlimivv 3199 . 2 (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω)
1931, 192sylbi 217 1 (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cun 3961  wss 3963  {csn 4631   cuni 4912   class class class wbr 5148  ran crn 5690  cima 5692  Oncon0 6386  suc csuc 6388   Fn wfn 6558  cfv 6563  (class class class)co 7431  ωcom 7887   No csur 27699   <s cslt 27700   bday cbday 27701   <<s csslt 27840   |s cscut 27842   0s c0s 27882   1s c1s 27883   +s cadds 28007   -s csubs 28067   ·s cmuls 28147   /su cdivs 28228  0scnn0s 28333  scnns 28334  sczs 28379  2sc2s 28409  scexps 28411  s[1/2]czs12 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-dc 10484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-divs 28229  df-seqs 28305  df-n0s 28335  df-nns 28336  df-zs 28380  df-2s 28410  df-exps 28412  df-zs12 28414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator