MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12bday Structured version   Visualization version   GIF version

Theorem zs12bday 28387
Description: A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
zs12bday (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)

Proof of Theorem zs12bday
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28376 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
2 fvoveq1 7364 . . . . . 6 (𝑧 = 𝑥 → ( bday ‘(𝑧 /su (2ss𝑦))) = ( bday ‘(𝑥 /su (2ss𝑦))))
32eleq1d 2814 . . . . 5 (𝑧 = 𝑥 → (( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
4 oveq2 7349 . . . . . . . . . . . 12 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
5 2sno 28335 . . . . . . . . . . . . 13 2s No
6 exps0 28343 . . . . . . . . . . . . 13 (2s No → (2ss 0s ) = 1s )
75, 6ax-mp 5 . . . . . . . . . . . 12 (2ss 0s ) = 1s
84, 7eqtrdi 2781 . . . . . . . . . . 11 (𝑚 = 0s → (2ss𝑚) = 1s )
98oveq2d 7357 . . . . . . . . . 10 (𝑚 = 0s → (𝑧 /su (2ss𝑚)) = (𝑧 /su 1s ))
109fveq2d 6821 . . . . . . . . 9 (𝑚 = 0s → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su 1s )))
1110eleq1d 2814 . . . . . . . 8 (𝑚 = 0s → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su 1s )) ∈ ω))
1211ralbidv 3153 . . . . . . 7 (𝑚 = 0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω))
13 oveq2 7349 . . . . . . . . . . 11 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1413oveq2d 7357 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑛)))
1514fveq2d 6821 . . . . . . . . 9 (𝑚 = 𝑛 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑛))))
1615eleq1d 2814 . . . . . . . 8 (𝑚 = 𝑛 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
1716ralbidv 3153 . . . . . . 7 (𝑚 = 𝑛 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
18 oveq2 7349 . . . . . . . . . . . 12 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1918oveq2d 7357 . . . . . . . . . . 11 (𝑚 = (𝑛 +s 1s ) → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss(𝑛 +s 1s ))))
2019fveq2d 6821 . . . . . . . . . 10 (𝑚 = (𝑛 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))))
2120eleq1d 2814 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2221ralbidv 3153 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
23 fvoveq1 7364 . . . . . . . . . 10 (𝑧 = 𝑤 → ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))))
2423eleq1d 2814 . . . . . . . . 9 (𝑧 = 𝑤 → (( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2524cbvralvw 3208 . . . . . . . 8 (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
2622, 25bitrdi 287 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
27 oveq2 7349 . . . . . . . . . . 11 (𝑚 = 𝑦 → (2ss𝑚) = (2ss𝑦))
2827oveq2d 7357 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑦)))
2928fveq2d 6821 . . . . . . . . 9 (𝑚 = 𝑦 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑦))))
3029eleq1d 2814 . . . . . . . 8 (𝑚 = 𝑦 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
3130ralbidv 3153 . . . . . . 7 (𝑚 = 𝑦 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
32 zno 28299 . . . . . . . . . . 11 (𝑧 ∈ ℤs𝑧 No )
33 divs1 28136 . . . . . . . . . . 11 (𝑧 No → (𝑧 /su 1s ) = 𝑧)
3432, 33syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤs → (𝑧 /su 1s ) = 𝑧)
3534fveq2d 6821 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) = ( bday 𝑧))
36 zsbday 28323 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday 𝑧) ∈ ω)
3735, 36eqeltrd 2829 . . . . . . . 8 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) ∈ ω)
3837rgen 3047 . . . . . . 7 𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω
39 zseo 28338 . . . . . . . . . 10 (𝑤 ∈ ℤs → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )))
40 expsp1 28345 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
415, 40mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4342oveq2d 7357 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
445a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s No )
45 zno 28299 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℤs𝑡 No )
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 𝑡 No )
4744, 46mulscld 28067 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
48 expscl 28347 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
495, 48mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
5049adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
51 2ne0s 28336 . . . . . . . . . . . . . . . . . . . . 21 2s ≠ 0s
52 expsne0 28352 . . . . . . . . . . . . . . . . . . . . 21 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
535, 51, 52mp3an12 1453 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
5551a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s ≠ 0s )
5647, 50, 44, 54, 55divdivs1d 28164 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
5744, 46, 50, 54divsassd 28162 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss𝑛)) = (2s ·s (𝑡 /su (2ss𝑛))))
5857oveq1d 7356 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
5943, 56, 583eqtr2d 2771 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
6046, 50, 54divscld 28155 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
6160, 44, 55divscan3d 28167 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s) = (𝑡 /su (2ss𝑛)))
6259, 61eqtrd 2765 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = (𝑡 /su (2ss𝑛)))
6362fveq2d 6821 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6463adantlr 715 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
65 fvoveq1 7364 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6665eleq1d 2814 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω))
6766rspccva 3574 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6867adantll 714 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6964, 68eqeltrd 2829 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω)
70 fvoveq1 7364 . . . . . . . . . . . . . 14 (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))))
7170eleq1d 2814 . . . . . . . . . . . . 13 (𝑤 = (2s ·s 𝑡) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω))
7269, 71syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7372rexlimdva 3131 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7445adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 No )
75 no2times 28333 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 No → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7776oveq1d 7356 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ((𝑡 +s 𝑡) +s 1s ))
78 1sno 27764 . . . . . . . . . . . . . . . . . . . . 21 1s No
7978a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s No )
8074, 74, 79addsassd 27942 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8177, 80eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8281oveq1d 7356 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
8374, 79addscld 27916 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ No )
84 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑛 ∈ ℕ0s)
8574sltp1d 27951 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 <s (𝑡 +s 1s ))
86 2nns 28334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2s ∈ ℕs
87 nnzs 28303 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2s ∈ ℕs → 2s ∈ ℤs)
8886, 87mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s ∈ ℤs)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 ∈ ℤs)
9088, 89zmulscld 28314 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ ℤs)
9190znod 28300 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
92 pncans 28005 . . . . . . . . . . . . . . . . . . . . . . 23 (((2s ·s 𝑡) ∈ No ∧ 1s No ) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9391, 78, 92sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9493eqcomd 2736 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (((2s ·s 𝑡) +s 1s ) -s 1s ))
9594sneqd 4586 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s 𝑡)} = {(((2s ·s 𝑡) +s 1s ) -s 1s )})
96 mulsrid 28045 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2s No → (2s ·s 1s ) = 2s)
975, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (2s ·s 1s ) = 2s
98 1p1e2s 28332 . . . . . . . . . . . . . . . . . . . . . . . 24 ( 1s +s 1s ) = 2s
9997, 98eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ·s 1s ) = ( 1s +s 1s )
10099oveq2i 7352 . . . . . . . . . . . . . . . . . . . . . 22 ((2s ·s 𝑡) +s (2s ·s 1s )) = ((2s ·s 𝑡) +s ( 1s +s 1s ))
1015a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s No )
102101, 74, 79addsdid 28088 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = ((2s ·s 𝑡) +s (2s ·s 1s )))
10391, 79, 79addsassd 27942 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) +s 1s ) = ((2s ·s 𝑡) +s ( 1s +s 1s )))
104100, 102, 1033eqtr4a 2791 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = (((2s ·s 𝑡) +s 1s ) +s 1s ))
105104sneqd 4586 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s (𝑡 +s 1s ))} = {(((2s ·s 𝑡) +s 1s ) +s 1s )})
10695, 105oveq12d 7359 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
107 1zs 28308 . . . . . . . . . . . . . . . . . . . . . 22 1s ∈ ℤs
108107a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s ∈ ℤs)
10990, 108zaddscld 28312 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) ∈ ℤs)
110 zscut 28324 . . . . . . . . . . . . . . . . . . . 20 (((2s ·s 𝑡) +s 1s ) ∈ ℤs → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
112106, 111, 813eqtr2d 2771 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = (𝑡 +s (𝑡 +s 1s )))
11374, 83, 84, 85, 112pw2cut 28373 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
11482, 113eqtr4d 2768 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}))
115114fveq2d 6821 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) = ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})))
11649ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
11753ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
11874, 116, 117divscld 28155 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
11983, 116, 117divscld 28155 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No )
12074, 116, 117divscan2d 28156 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) = 𝑡)
121120, 85eqbrtrd 5111 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ))
122 nnsgt0 28260 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ∈ ℕs → 0s <s 2s)
12386, 122ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 0s <s 2s
124 expsgt0 28353 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No 𝑛 ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss𝑛))
1255, 123, 124mp3an13 1454 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0s → 0s <s (2ss𝑛))
126125ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 0s <s (2ss𝑛))
127118, 83, 116, 126sltmuldiv2d 28161 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ) ↔ (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛))))
128121, 127mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛)))
129118, 119, 128ssltsn 27726 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))})
130 imaundi 6093 . . . . . . . . . . . . . . . . . . . . . 22 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
131130unieqi 4869 . . . . . . . . . . . . . . . . . . . . 21 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
132 uniun 4880 . . . . . . . . . . . . . . . . . . . . 21 (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
133131, 132eqtri 2753 . . . . . . . . . . . . . . . . . . . 20 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
134 bdayfn 27705 . . . . . . . . . . . . . . . . . . . . . . . . 25 bday Fn No
135 fnsnfv 6896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ (𝑡 /su (2ss𝑛)) ∈ No ) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
136134, 118, 135sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
137136unieqd 4870 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
138 fvex 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘(𝑡 /su (2ss𝑛))) ∈ V
139138unisn 4876 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday ‘(𝑡 /su (2ss𝑛)))
140137, 139eqtr3di 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) = ( bday ‘(𝑡 /su (2ss𝑛))))
141140, 68eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω)
142 fnsnfv 6896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No ) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
143134, 119, 142sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
144143unieqd 4870 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
145 fvex 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ V
146145unisn 4876 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))
147144, 146eqtr3di 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
148 fvoveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑡 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
149148eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑡 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω))
150 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω)
15189, 108zaddscld 28312 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ ℤs)
152149, 150, 151rspcdva 3576 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω)
153147, 152eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω)
154 omun 7813 . . . . . . . . . . . . . . . . . . . . 21 (( ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω ∧ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
155141, 153, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
156133, 155eqeltrid 2833 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
157 peano2 7815 . . . . . . . . . . . . . . . . . . 19 ( ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
158156, 157syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
159 nnon 7797 . . . . . . . . . . . . . . . . . 18 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
160158, 159syl 17 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
161 imassrn 6017 . . . . . . . . . . . . . . . . . . 19 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ ran bday
162 bdayrn 27707 . . . . . . . . . . . . . . . . . . 19 ran bday = On
163161, 162sseqtri 3981 . . . . . . . . . . . . . . . . . 18 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On
164 onsucuni 7753 . . . . . . . . . . . . . . . . . 18 (( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
165163, 164mp1i 13 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
166 scutbdaybnd 27749 . . . . . . . . . . . . . . . . 17 (({(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))} ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
167129, 160, 165, 166syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
168 bdayelon 27708 . . . . . . . . . . . . . . . . 17 ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On
169 onsssuc 6394 . . . . . . . . . . . . . . . . 17 ((( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
170168, 160, 169sylancr 587 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
171167, 170mpbid 232 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
172115, 171eqeltrd 2829 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
173 peano2 7815 . . . . . . . . . . . . . . 15 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
174158, 173syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
175 elnn 7802 . . . . . . . . . . . . . 14 ((( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∧ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
176172, 174, 175syl2anc 584 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
177 fvoveq1 7364 . . . . . . . . . . . . . 14 (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))))
178177eleq1d 2814 . . . . . . . . . . . . 13 (𝑤 = ((2s ·s 𝑡) +s 1s ) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω))
179176, 178syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
180179rexlimdva 3131 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18173, 180jaod 859 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ((∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18239, 181syl5 34 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (𝑤 ∈ ℤs → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
183182ralrimiv 3121 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
184183ex 412 . . . . . . 7 (𝑛 ∈ ℕ0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18512, 17, 26, 31, 38, 184n0sind 28254 . . . . . 6 (𝑦 ∈ ℕ0s → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
186185adantl 481 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
187 simpl 482 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → 𝑥 ∈ ℤs)
1883, 186, 187rspcdva 3576 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω)
189 fveq2 6817 . . . . 5 (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) = ( bday ‘(𝑥 /su (2ss𝑦))))
190189eleq1d 2814 . . . 4 (𝐴 = (𝑥 /su (2ss𝑦)) → (( bday 𝐴) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
191188, 190syl5ibrcom 247 . . 3 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω))
192191rexlimivv 3172 . 2 (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω)
1931, 192sylbi 217 1 (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  cun 3898  wss 3900  {csn 4574   cuni 4857   class class class wbr 5089  ran crn 5615  cima 5617  Oncon0 6302  suc csuc 6304   Fn wfn 6472  cfv 6477  (class class class)co 7341  ωcom 7791   No csur 27571   <s cslt 27572   bday cbday 27573   <<s csslt 27713   |s cscut 27715   0s c0s 27759   1s c1s 27760   +s cadds 27895   -s csubs 27955   ·s cmuls 28038   /su cdivs 28119  0scnn0s 28235  scnns 28236  sczs 28295  2sc2s 28326  scexps 28328  s[1/2]czs12 28330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-dc 10329
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039  df-divs 28120  df-seqs 28207  df-n0s 28237  df-nns 28238  df-zs 28296  df-2s 28327  df-exps 28329  df-zs12 28331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator