MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12bday Structured version   Visualization version   GIF version

Theorem zs12bday 28400
Description: A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
zs12bday (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)

Proof of Theorem zs12bday
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28394 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
2 fvoveq1 7433 . . . . . 6 (𝑧 = 𝑥 → ( bday ‘(𝑧 /su (2ss𝑦))) = ( bday ‘(𝑥 /su (2ss𝑦))))
32eleq1d 2820 . . . . 5 (𝑧 = 𝑥 → (( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
4 oveq2 7418 . . . . . . . . . . . 12 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
5 2sno 28362 . . . . . . . . . . . . 13 2s No
6 exps0 28370 . . . . . . . . . . . . 13 (2s No → (2ss 0s ) = 1s )
75, 6ax-mp 5 . . . . . . . . . . . 12 (2ss 0s ) = 1s
84, 7eqtrdi 2787 . . . . . . . . . . 11 (𝑚 = 0s → (2ss𝑚) = 1s )
98oveq2d 7426 . . . . . . . . . 10 (𝑚 = 0s → (𝑧 /su (2ss𝑚)) = (𝑧 /su 1s ))
109fveq2d 6885 . . . . . . . . 9 (𝑚 = 0s → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su 1s )))
1110eleq1d 2820 . . . . . . . 8 (𝑚 = 0s → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su 1s )) ∈ ω))
1211ralbidv 3164 . . . . . . 7 (𝑚 = 0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω))
13 oveq2 7418 . . . . . . . . . . 11 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1413oveq2d 7426 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑛)))
1514fveq2d 6885 . . . . . . . . 9 (𝑚 = 𝑛 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑛))))
1615eleq1d 2820 . . . . . . . 8 (𝑚 = 𝑛 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
1716ralbidv 3164 . . . . . . 7 (𝑚 = 𝑛 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
18 oveq2 7418 . . . . . . . . . . . 12 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1918oveq2d 7426 . . . . . . . . . . 11 (𝑚 = (𝑛 +s 1s ) → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss(𝑛 +s 1s ))))
2019fveq2d 6885 . . . . . . . . . 10 (𝑚 = (𝑛 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))))
2120eleq1d 2820 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2221ralbidv 3164 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
23 fvoveq1 7433 . . . . . . . . . 10 (𝑧 = 𝑤 → ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))))
2423eleq1d 2820 . . . . . . . . 9 (𝑧 = 𝑤 → (( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2524cbvralvw 3224 . . . . . . . 8 (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
2622, 25bitrdi 287 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
27 oveq2 7418 . . . . . . . . . . 11 (𝑚 = 𝑦 → (2ss𝑚) = (2ss𝑦))
2827oveq2d 7426 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑦)))
2928fveq2d 6885 . . . . . . . . 9 (𝑚 = 𝑦 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑦))))
3029eleq1d 2820 . . . . . . . 8 (𝑚 = 𝑦 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
3130ralbidv 3164 . . . . . . 7 (𝑚 = 𝑦 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
32 zno 28327 . . . . . . . . . . 11 (𝑧 ∈ ℤs𝑧 No )
33 divs1 28164 . . . . . . . . . . 11 (𝑧 No → (𝑧 /su 1s ) = 𝑧)
3432, 33syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤs → (𝑧 /su 1s ) = 𝑧)
3534fveq2d 6885 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) = ( bday 𝑧))
36 zsbday 28351 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday 𝑧) ∈ ω)
3735, 36eqeltrd 2835 . . . . . . . 8 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) ∈ ω)
3837rgen 3054 . . . . . . 7 𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω
39 zseo 28365 . . . . . . . . . 10 (𝑤 ∈ ℤs → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )))
40 expsp1 28372 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
415, 40mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4342oveq2d 7426 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
445a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s No )
45 zno 28327 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℤs𝑡 No )
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 𝑡 No )
4744, 46mulscld 28095 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
48 expscl 28374 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
495, 48mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
5049adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
51 2ne0s 28363 . . . . . . . . . . . . . . . . . . . . 21 2s ≠ 0s
52 expsne0 28378 . . . . . . . . . . . . . . . . . . . . 21 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
535, 51, 52mp3an12 1453 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
5551a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s ≠ 0s )
5647, 50, 44, 54, 55divdivs1d 28192 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
5744, 46, 50, 54divsassd 28190 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss𝑛)) = (2s ·s (𝑡 /su (2ss𝑛))))
5857oveq1d 7425 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
5943, 56, 583eqtr2d 2777 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
6046, 50, 54divscld 28183 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
6160, 44, 55divscan3d 28195 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s) = (𝑡 /su (2ss𝑛)))
6259, 61eqtrd 2771 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = (𝑡 /su (2ss𝑛)))
6362fveq2d 6885 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6463adantlr 715 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
65 fvoveq1 7433 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6665eleq1d 2820 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω))
6766rspccva 3605 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6867adantll 714 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6964, 68eqeltrd 2835 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω)
70 fvoveq1 7433 . . . . . . . . . . . . . 14 (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))))
7170eleq1d 2820 . . . . . . . . . . . . 13 (𝑤 = (2s ·s 𝑡) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω))
7269, 71syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7372rexlimdva 3142 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7445adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 No )
75 no2times 28360 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 No → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7776oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ((𝑡 +s 𝑡) +s 1s ))
78 1sno 27796 . . . . . . . . . . . . . . . . . . . . 21 1s No
7978a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s No )
8074, 74, 79addsassd 27970 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8177, 80eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8281oveq1d 7425 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
8374, 79addscld 27944 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ No )
84 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑛 ∈ ℕ0s)
8574sltp1d 27979 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 <s (𝑡 +s 1s ))
86 2nns 28361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2s ∈ ℕs
87 nnzs 28331 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2s ∈ ℕs → 2s ∈ ℤs)
8886, 87mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s ∈ ℤs)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 ∈ ℤs)
9088, 89zmulscld 28342 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ ℤs)
9190znod 28328 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
92 pncans 28033 . . . . . . . . . . . . . . . . . . . . . . 23 (((2s ·s 𝑡) ∈ No ∧ 1s No ) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9391, 78, 92sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9493eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (((2s ·s 𝑡) +s 1s ) -s 1s ))
9594sneqd 4618 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s 𝑡)} = {(((2s ·s 𝑡) +s 1s ) -s 1s )})
96 mulsrid 28073 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2s No → (2s ·s 1s ) = 2s)
975, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (2s ·s 1s ) = 2s
98 1p1e2s 28359 . . . . . . . . . . . . . . . . . . . . . . . 24 ( 1s +s 1s ) = 2s
9997, 98eqtr4i 2762 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ·s 1s ) = ( 1s +s 1s )
10099oveq2i 7421 . . . . . . . . . . . . . . . . . . . . . 22 ((2s ·s 𝑡) +s (2s ·s 1s )) = ((2s ·s 𝑡) +s ( 1s +s 1s ))
1015a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s No )
102101, 74, 79addsdid 28116 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = ((2s ·s 𝑡) +s (2s ·s 1s )))
10391, 79, 79addsassd 27970 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) +s 1s ) = ((2s ·s 𝑡) +s ( 1s +s 1s )))
104100, 102, 1033eqtr4a 2797 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = (((2s ·s 𝑡) +s 1s ) +s 1s ))
105104sneqd 4618 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s (𝑡 +s 1s ))} = {(((2s ·s 𝑡) +s 1s ) +s 1s )})
10695, 105oveq12d 7428 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
107 1zs 28336 . . . . . . . . . . . . . . . . . . . . . 22 1s ∈ ℤs
108107a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s ∈ ℤs)
10990, 108zaddscld 28340 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) ∈ ℤs)
110 zscut 28352 . . . . . . . . . . . . . . . . . . . 20 (((2s ·s 𝑡) +s 1s ) ∈ ℤs → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
112106, 111, 813eqtr2d 2777 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = (𝑡 +s (𝑡 +s 1s )))
11374, 83, 84, 85, 112pw2cut 28392 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
11482, 113eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}))
115114fveq2d 6885 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) = ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})))
11649ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
11753ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
11874, 116, 117divscld 28183 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
11983, 116, 117divscld 28183 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No )
12074, 116, 117divscan2d 28184 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) = 𝑡)
121120, 85eqbrtrd 5146 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ))
122 nnsgt0 28288 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ∈ ℕs → 0s <s 2s)
12386, 122ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 0s <s 2s
124 expsgt0 28379 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No 𝑛 ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss𝑛))
1255, 123, 124mp3an13 1454 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0s → 0s <s (2ss𝑛))
126125ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 0s <s (2ss𝑛))
127118, 83, 116, 126sltmuldiv2d 28189 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ) ↔ (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛))))
128121, 127mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛)))
129118, 119, 128ssltsn 27761 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))})
130 imaundi 6143 . . . . . . . . . . . . . . . . . . . . . 22 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
131130unieqi 4900 . . . . . . . . . . . . . . . . . . . . 21 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
132 uniun 4911 . . . . . . . . . . . . . . . . . . . . 21 (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
133131, 132eqtri 2759 . . . . . . . . . . . . . . . . . . . 20 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
134 bdayfn 27742 . . . . . . . . . . . . . . . . . . . . . . . . 25 bday Fn No
135 fnsnfv 6963 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ (𝑡 /su (2ss𝑛)) ∈ No ) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
136134, 118, 135sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
137136unieqd 4901 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
138 fvex 6894 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘(𝑡 /su (2ss𝑛))) ∈ V
139138unisn 4907 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday ‘(𝑡 /su (2ss𝑛)))
140137, 139eqtr3di 2786 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) = ( bday ‘(𝑡 /su (2ss𝑛))))
141140, 68eqeltrd 2835 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω)
142 fnsnfv 6963 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No ) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
143134, 119, 142sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
144143unieqd 4901 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
145 fvex 6894 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ V
146145unisn 4907 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))
147144, 146eqtr3di 2786 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
148 fvoveq1 7433 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑡 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
149148eleq1d 2820 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑡 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω))
150 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω)
15189, 108zaddscld 28340 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ ℤs)
152149, 150, 151rspcdva 3607 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω)
153147, 152eqeltrd 2835 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω)
154 omun 7888 . . . . . . . . . . . . . . . . . . . . 21 (( ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω ∧ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
155141, 153, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
156133, 155eqeltrid 2839 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
157 peano2 7891 . . . . . . . . . . . . . . . . . . 19 ( ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
158156, 157syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
159 nnon 7872 . . . . . . . . . . . . . . . . . 18 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
160158, 159syl 17 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
161 imassrn 6063 . . . . . . . . . . . . . . . . . . 19 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ ran bday
162 bdayrn 27744 . . . . . . . . . . . . . . . . . . 19 ran bday = On
163161, 162sseqtri 4012 . . . . . . . . . . . . . . . . . 18 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On
164 onsucuni 7827 . . . . . . . . . . . . . . . . . 18 (( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
165163, 164mp1i 13 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
166 scutbdaybnd 27784 . . . . . . . . . . . . . . . . 17 (({(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))} ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
167129, 160, 165, 166syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
168 bdayelon 27745 . . . . . . . . . . . . . . . . 17 ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On
169 onsssuc 6449 . . . . . . . . . . . . . . . . 17 ((( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
170168, 160, 169sylancr 587 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
171167, 170mpbid 232 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
172115, 171eqeltrd 2835 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
173 peano2 7891 . . . . . . . . . . . . . . 15 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
174158, 173syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
175 elnn 7877 . . . . . . . . . . . . . 14 ((( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∧ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
176172, 174, 175syl2anc 584 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
177 fvoveq1 7433 . . . . . . . . . . . . . 14 (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))))
178177eleq1d 2820 . . . . . . . . . . . . 13 (𝑤 = ((2s ·s 𝑡) +s 1s ) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω))
179176, 178syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
180179rexlimdva 3142 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18173, 180jaod 859 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ((∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18239, 181syl5 34 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (𝑤 ∈ ℤs → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
183182ralrimiv 3132 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
184183ex 412 . . . . . . 7 (𝑛 ∈ ℕ0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18512, 17, 26, 31, 38, 184n0sind 28282 . . . . . 6 (𝑦 ∈ ℕ0s → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
186185adantl 481 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
187 simpl 482 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → 𝑥 ∈ ℤs)
1883, 186, 187rspcdva 3607 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω)
189 fveq2 6881 . . . . 5 (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) = ( bday ‘(𝑥 /su (2ss𝑦))))
190189eleq1d 2820 . . . 4 (𝐴 = (𝑥 /su (2ss𝑦)) → (( bday 𝐴) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
191188, 190syl5ibrcom 247 . . 3 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω))
192191rexlimivv 3187 . 2 (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω)
1931, 192sylbi 217 1 (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cun 3929  wss 3931  {csn 4606   cuni 4888   class class class wbr 5124  ran crn 5660  cima 5662  Oncon0 6357  suc csuc 6359   Fn wfn 6531  cfv 6536  (class class class)co 7410  ωcom 7866   No csur 27608   <s cslt 27609   bday cbday 27610   <<s csslt 27749   |s cscut 27751   0s c0s 27791   1s c1s 27792   +s cadds 27923   -s csubs 27983   ·s cmuls 28066   /su cdivs 28147  0scnn0s 28263  scnns 28264  sczs 28323  2sc2s 28353  scexps 28355  s[1/2]czs12 28357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-dc 10465
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-divs 28148  df-seqs 28235  df-n0s 28265  df-nns 28266  df-zs 28324  df-2s 28354  df-exps 28356  df-zs12 28358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator