MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12bday Structured version   Visualization version   GIF version

Theorem zs12bday 28425
Description: A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
zs12bday (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)

Proof of Theorem zs12bday
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs12 28422 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
2 fvoveq1 7455 . . . . . 6 (𝑧 = 𝑥 → ( bday ‘(𝑧 /su (2ss𝑦))) = ( bday ‘(𝑥 /su (2ss𝑦))))
32eleq1d 2825 . . . . 5 (𝑧 = 𝑥 → (( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
4 oveq2 7440 . . . . . . . . . . . 12 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
5 2sno 28404 . . . . . . . . . . . . 13 2s No
6 exps0 28411 . . . . . . . . . . . . 13 (2s No → (2ss 0s ) = 1s )
75, 6ax-mp 5 . . . . . . . . . . . 12 (2ss 0s ) = 1s
84, 7eqtrdi 2792 . . . . . . . . . . 11 (𝑚 = 0s → (2ss𝑚) = 1s )
98oveq2d 7448 . . . . . . . . . 10 (𝑚 = 0s → (𝑧 /su (2ss𝑚)) = (𝑧 /su 1s ))
109fveq2d 6909 . . . . . . . . 9 (𝑚 = 0s → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su 1s )))
1110eleq1d 2825 . . . . . . . 8 (𝑚 = 0s → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su 1s )) ∈ ω))
1211ralbidv 3177 . . . . . . 7 (𝑚 = 0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω))
13 oveq2 7440 . . . . . . . . . . 11 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1413oveq2d 7448 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑛)))
1514fveq2d 6909 . . . . . . . . 9 (𝑚 = 𝑛 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑛))))
1615eleq1d 2825 . . . . . . . 8 (𝑚 = 𝑛 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
1716ralbidv 3177 . . . . . . 7 (𝑚 = 𝑛 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω))
18 oveq2 7440 . . . . . . . . . . . 12 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1918oveq2d 7448 . . . . . . . . . . 11 (𝑚 = (𝑛 +s 1s ) → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss(𝑛 +s 1s ))))
2019fveq2d 6909 . . . . . . . . . 10 (𝑚 = (𝑛 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))))
2120eleq1d 2825 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2221ralbidv 3177 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω))
23 fvoveq1 7455 . . . . . . . . . 10 (𝑧 = 𝑤 → ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))))
2423eleq1d 2825 . . . . . . . . 9 (𝑧 = 𝑤 → (( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
2524cbvralvw 3236 . . . . . . . 8 (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
2622, 25bitrdi 287 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
27 oveq2 7440 . . . . . . . . . . 11 (𝑚 = 𝑦 → (2ss𝑚) = (2ss𝑦))
2827oveq2d 7448 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑧 /su (2ss𝑚)) = (𝑧 /su (2ss𝑦)))
2928fveq2d 6909 . . . . . . . . 9 (𝑚 = 𝑦 → ( bday ‘(𝑧 /su (2ss𝑚))) = ( bday ‘(𝑧 /su (2ss𝑦))))
3029eleq1d 2825 . . . . . . . 8 (𝑚 = 𝑦 → (( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
3130ralbidv 3177 . . . . . . 7 (𝑚 = 𝑦 → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑚))) ∈ ω ↔ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω))
32 zno 28369 . . . . . . . . . . 11 (𝑧 ∈ ℤs𝑧 No )
33 divs1 28230 . . . . . . . . . . 11 (𝑧 No → (𝑧 /su 1s ) = 𝑧)
3432, 33syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤs → (𝑧 /su 1s ) = 𝑧)
3534fveq2d 6909 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) = ( bday 𝑧))
36 zsbday 28393 . . . . . . . . 9 (𝑧 ∈ ℤs → ( bday 𝑧) ∈ ω)
3735, 36eqeltrd 2840 . . . . . . . 8 (𝑧 ∈ ℤs → ( bday ‘(𝑧 /su 1s )) ∈ ω)
3837rgen 3062 . . . . . . 7 𝑧 ∈ ℤs ( bday ‘(𝑧 /su 1s )) ∈ ω
39 zseo 28407 . . . . . . . . . 10 (𝑤 ∈ ℤs → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )))
40 expsp1 28413 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
415, 40mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4342oveq2d 7448 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
445a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s No )
45 zno 28369 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℤs𝑡 No )
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 𝑡 No )
4744, 46mulscld 28162 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
48 expscl 28414 . . . . . . . . . . . . . . . . . . . . 21 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
495, 48mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
5049adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
51 2ne0s 28405 . . . . . . . . . . . . . . . . . . . . 21 2s ≠ 0s
52 expsne0 28415 . . . . . . . . . . . . . . . . . . . . 21 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
535, 51, 52mp3an12 1452 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
5551a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → 2s ≠ 0s )
5647, 50, 44, 54, 55divdivs1d 28258 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s 𝑡) /su ((2ss𝑛) ·s 2s)))
5744, 46, 50, 54divsassd 28256 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss𝑛)) = (2s ·s (𝑡 /su (2ss𝑛))))
5857oveq1d 7447 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (((2s ·s 𝑡) /su (2ss𝑛)) /su 2s) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
5943, 56, 583eqtr2d 2782 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s))
6046, 50, 54divscld 28249 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
6160, 44, 55divscan3d 28261 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s (𝑡 /su (2ss𝑛))) /su 2s) = (𝑡 /su (2ss𝑛)))
6259, 61eqtrd 2776 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ((2s ·s 𝑡) /su (2ss(𝑛 +s 1s ))) = (𝑡 /su (2ss𝑛)))
6362fveq2d 6909 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6463adantlr 715 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) = ( bday ‘(𝑡 /su (2ss𝑛))))
65 fvoveq1 7455 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘(𝑡 /su (2ss𝑛))))
6665eleq1d 2825 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω))
6766rspccva 3620 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6867adantll 714 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(𝑡 /su (2ss𝑛))) ∈ ω)
6964, 68eqeltrd 2840 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω)
70 fvoveq1 7455 . . . . . . . . . . . . . 14 (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))))
7170eleq1d 2825 . . . . . . . . . . . . 13 (𝑤 = (2s ·s 𝑡) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘((2s ·s 𝑡) /su (2ss(𝑛 +s 1s )))) ∈ ω))
7269, 71syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7372rexlimdva 3154 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
7445adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 No )
75 no2times 28402 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 No → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (𝑡 +s 𝑡))
7776oveq1d 7447 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ((𝑡 +s 𝑡) +s 1s ))
78 1sno 27873 . . . . . . . . . . . . . . . . . . . . 21 1s No
7978a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s No )
8074, 74, 79addsassd 28040 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8177, 80eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = (𝑡 +s (𝑡 +s 1s )))
8281oveq1d 7447 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
8374, 79addscld 28014 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ No )
84 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑛 ∈ ℕ0s)
8574sltp1d 28049 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 <s (𝑡 +s 1s ))
86 2nns 28403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2s ∈ ℕs
87 nnzs 28373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2s ∈ ℕs → 2s ∈ ℤs)
8886, 87mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s ∈ ℤs)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 𝑡 ∈ ℤs)
9088, 89zmulscld 28384 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ ℤs)
9190znod 28370 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) ∈ No )
92 pncans 28103 . . . . . . . . . . . . . . . . . . . . . . 23 (((2s ·s 𝑡) ∈ No ∧ 1s No ) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9391, 78, 92sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) -s 1s ) = (2s ·s 𝑡))
9493eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s 𝑡) = (((2s ·s 𝑡) +s 1s ) -s 1s ))
9594sneqd 4637 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s 𝑡)} = {(((2s ·s 𝑡) +s 1s ) -s 1s )})
96 mulsrid 28140 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2s No → (2s ·s 1s ) = 2s)
975, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (2s ·s 1s ) = 2s
98 1p1e2s 28401 . . . . . . . . . . . . . . . . . . . . . . . 24 ( 1s +s 1s ) = 2s
9997, 98eqtr4i 2767 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ·s 1s ) = ( 1s +s 1s )
10099oveq2i 7443 . . . . . . . . . . . . . . . . . . . . . 22 ((2s ·s 𝑡) +s (2s ·s 1s )) = ((2s ·s 𝑡) +s ( 1s +s 1s ))
1015a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 2s No )
102101, 74, 79addsdid 28183 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = ((2s ·s 𝑡) +s (2s ·s 1s )))
10391, 79, 79addsassd 28040 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) +s 1s ) = ((2s ·s 𝑡) +s ( 1s +s 1s )))
104100, 102, 1033eqtr4a 2802 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2s ·s (𝑡 +s 1s )) = (((2s ·s 𝑡) +s 1s ) +s 1s ))
105104sneqd 4637 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(2s ·s (𝑡 +s 1s ))} = {(((2s ·s 𝑡) +s 1s ) +s 1s )})
10695, 105oveq12d 7450 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
107 1zs 28378 . . . . . . . . . . . . . . . . . . . . . 22 1s ∈ ℤs
108107a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 1s ∈ ℤs)
10990, 108zaddscld 28382 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) ∈ ℤs)
110 zscut 28394 . . . . . . . . . . . . . . . . . . . 20 (((2s ·s 𝑡) +s 1s ) ∈ ℤs → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2s ·s 𝑡) +s 1s ) = ({(((2s ·s 𝑡) +s 1s ) -s 1s )} |s {(((2s ·s 𝑡) +s 1s ) +s 1s )}))
112106, 111, 813eqtr2d 2782 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(2s ·s 𝑡)} |s {(2s ·s (𝑡 +s 1s ))}) = (𝑡 +s (𝑡 +s 1s )))
11374, 83, 84, 85, 112pw2cut 28421 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}) = ((𝑡 +s (𝑡 +s 1s )) /su (2ss(𝑛 +s 1s ))))
11482, 113eqtr4d 2779 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s ))) = ({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))}))
115114fveq2d 6909 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) = ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})))
11649ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ∈ No )
11753ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (2ss𝑛) ≠ 0s )
11874, 116, 117divscld 28249 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) ∈ No )
11983, 116, 117divscld 28249 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No )
12074, 116, 117divscan2d 28250 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) = 𝑡)
121120, 85eqbrtrd 5164 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ))
122 nnsgt0 28343 . . . . . . . . . . . . . . . . . . . . . . 23 (2s ∈ ℕs → 0s <s 2s)
12386, 122ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 0s <s 2s
124 expsgt0 28416 . . . . . . . . . . . . . . . . . . . . . 22 ((2s No 𝑛 ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss𝑛))
1255, 123, 124mp3an13 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0s → 0s <s (2ss𝑛))
126125ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → 0s <s (2ss𝑛))
127118, 83, 116, 126sltmuldiv2d 28255 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (((2ss𝑛) ·s (𝑡 /su (2ss𝑛))) <s (𝑡 +s 1s ) ↔ (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛))))
128121, 127mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 /su (2ss𝑛)) <s ((𝑡 +s 1s ) /su (2ss𝑛)))
129118, 119, 128ssltsn 27838 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))})
130 imaundi 6168 . . . . . . . . . . . . . . . . . . . . . 22 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
131130unieqi 4918 . . . . . . . . . . . . . . . . . . . . 21 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
132 uniun 4929 . . . . . . . . . . . . . . . . . . . . 21 (( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
133131, 132eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) = ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
134 bdayfn 27819 . . . . . . . . . . . . . . . . . . . . . . . . 25 bday Fn No
135 fnsnfv 6987 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ (𝑡 /su (2ss𝑛)) ∈ No ) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
136134, 118, 135sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
137136unieqd 4919 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday “ {(𝑡 /su (2ss𝑛))}))
138 fvex 6918 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘(𝑡 /su (2ss𝑛))) ∈ V
139138unisn 4925 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘(𝑡 /su (2ss𝑛)))} = ( bday ‘(𝑡 /su (2ss𝑛)))
140137, 139eqtr3di 2791 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) = ( bday ‘(𝑡 /su (2ss𝑛))))
141140, 68eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω)
142 fnsnfv 6987 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( bday Fn No ∧ ((𝑡 +s 1s ) /su (2ss𝑛)) ∈ No ) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
143134, 119, 142sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
144143unieqd 4919 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}))
145 fvex 6918 . . . . . . . . . . . . . . . . . . . . . . . 24 ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ V
146145unisn 4925 . . . . . . . . . . . . . . . . . . . . . . 23 {( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))} = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛)))
147144, 146eqtr3di 2791 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
148 fvoveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑡 +s 1s ) → ( bday ‘(𝑧 /su (2ss𝑛))) = ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))))
149148eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑡 +s 1s ) → (( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω ↔ ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω))
150 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω)
15189, 108zaddscld 28382 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑡 +s 1s ) ∈ ℤs)
152149, 150, 151rspcdva 3622 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘((𝑡 +s 1s ) /su (2ss𝑛))) ∈ ω)
153147, 152eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω)
154 omun 7910 . . . . . . . . . . . . . . . . . . . . 21 (( ( bday “ {(𝑡 /su (2ss𝑛))}) ∈ ω ∧ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))}) ∈ ω) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
155141, 153, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( ( bday “ {(𝑡 /su (2ss𝑛))}) ∪ ( bday “ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
156133, 155eqeltrid 2844 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
157 peano2 7913 . . . . . . . . . . . . . . . . . . 19 ( ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
158156, 157syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
159 nnon 7894 . . . . . . . . . . . . . . . . . 18 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
160158, 159syl 17 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On)
161 imassrn 6088 . . . . . . . . . . . . . . . . . . 19 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ ran bday
162 bdayrn 27821 . . . . . . . . . . . . . . . . . . 19 ran bday = On
163161, 162sseqtri 4031 . . . . . . . . . . . . . . . . . 18 ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On
164 onsucuni 7849 . . . . . . . . . . . . . . . . . 18 (( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ On → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
165163, 164mp1i 13 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
166 scutbdaybnd 27861 . . . . . . . . . . . . . . . . 17 (({(𝑡 /su (2ss𝑛))} <<s {((𝑡 +s 1s ) /su (2ss𝑛))} ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
167129, 160, 165, 166syl3anc 1372 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
168 bdayelon 27822 . . . . . . . . . . . . . . . . 17 ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On
169 onsssuc 6473 . . . . . . . . . . . . . . . . 17 ((( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On ∧ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ On) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
170168, 160, 169sylancr 587 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ⊆ suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ↔ ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))}))))
171167, 170mpbid 232 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘({(𝑡 /su (2ss𝑛))} |s {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
172115, 171eqeltrd 2840 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})))
173 peano2 7913 . . . . . . . . . . . . . . 15 (suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
174158, 173syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω)
175 elnn 7899 . . . . . . . . . . . . . 14 ((( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∧ suc suc ( bday “ ({(𝑡 /su (2ss𝑛))} ∪ {((𝑡 +s 1s ) /su (2ss𝑛))})) ∈ ω) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
176172, 174, 175syl2anc 584 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω)
177 fvoveq1 7455 . . . . . . . . . . . . . 14 (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) = ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))))
178177eleq1d 2825 . . . . . . . . . . . . 13 (𝑤 = ((2s ·s 𝑡) +s 1s ) → (( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω ↔ ( bday ‘(((2s ·s 𝑡) +s 1s ) /su (2ss(𝑛 +s 1s )))) ∈ ω))
179176, 178syl5ibrcom 247 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) ∧ 𝑡 ∈ ℤs) → (𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
180179rexlimdva 3154 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s ) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18173, 180jaod 859 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ((∃𝑡 ∈ ℤs 𝑤 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℤs 𝑤 = ((2s ·s 𝑡) +s 1s )) → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18239, 181syl5 34 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → (𝑤 ∈ ℤs → ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
183182ralrimiv 3144 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω) → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω)
184183ex 412 . . . . . . 7 (𝑛 ∈ ℕ0s → (∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑛))) ∈ ω → ∀𝑤 ∈ ℤs ( bday ‘(𝑤 /su (2ss(𝑛 +s 1s )))) ∈ ω))
18512, 17, 26, 31, 38, 184n0sind 28338 . . . . . 6 (𝑦 ∈ ℕ0s → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
186185adantl 481 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ∀𝑧 ∈ ℤs ( bday ‘(𝑧 /su (2ss𝑦))) ∈ ω)
187 simpl 482 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → 𝑥 ∈ ℤs)
1883, 186, 187rspcdva 3622 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω)
189 fveq2 6905 . . . . 5 (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) = ( bday ‘(𝑥 /su (2ss𝑦))))
190189eleq1d 2825 . . . 4 (𝐴 = (𝑥 /su (2ss𝑦)) → (( bday 𝐴) ∈ ω ↔ ( bday ‘(𝑥 /su (2ss𝑦))) ∈ ω))
191188, 190syl5ibrcom 247 . . 3 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω))
192191rexlimivv 3200 . 2 (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)) → ( bday 𝐴) ∈ ω)
1931, 192sylbi 217 1 (𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  cun 3948  wss 3950  {csn 4625   cuni 4906   class class class wbr 5142  ran crn 5685  cima 5687  Oncon0 6383  suc csuc 6385   Fn wfn 6555  cfv 6560  (class class class)co 7432  ωcom 7888   No csur 27685   <s cslt 27686   bday cbday 27687   <<s csslt 27826   |s cscut 27828   0s c0s 27868   1s c1s 27869   +s cadds 27993   -s csubs 28053   ·s cmuls 28133   /su cdivs 28214  0scnn0s 28319  scnns 28320  sczs 28365  2sc2s 28395  scexps 28397  s[1/2]czs12 28399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-dc 10487
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sle 27791  df-sslt 27827  df-scut 27829  df-0s 27870  df-1s 27871  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec 27972  df-norec2 27983  df-adds 27994  df-negs 28054  df-subs 28055  df-muls 28134  df-divs 28215  df-seqs 28291  df-n0s 28321  df-nns 28322  df-zs 28366  df-2s 28396  df-exps 28398  df-zs12 28400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator